Frakcje pyłu – techniki pomiarowe

    Skład frakcyjny emitowanego pyłu jest specyficzny dla źródła emisji. Zależy od ogółu zjawisk zachodzących w źródle, w szczególności od parametrów procesu, budowy źródła oraz stosowanych procesów oczyszczania odgazów. Wymienione cechy sprawiają, że przyjęcie charakterystyki wyznaczonej dla innego źródła jest bardzo ograniczone i musi zostać poprzedzone dogłębną analizą podobieństwa wszystkich czynników determinujących uziarnienie pyłu. Najmniejszym błędem jest obarczone przejęcie charakterystyki pyłu dla źródeł prostych, o podobnej budowie, niewyposażonych w urządzenia odpylające i pracujących na zbliżonych parametrach, np. kotłów o jednakowej mocy i budowie, zasilanych takim samym paliwem gazowym lub ciekłym, lub stanowisk spawalniczych wykorzystujących tę samą technikę spawania, parametry prądu spawalniczego, rodzaj spawanego materiału i materiału łączącego. W praktyce prawdopodobieństwo uzyskania tak znacznej zgodności jest bardzo małe. Z tego względu dla instalacji, z których emisja pyłu ma duże znacznie dla jakości powietrza, jeśli tylko jest to możliwe, zaleca się wykonanie pomiarów składu granulometrycznego emitowanych pyłów, mimo że obecne techniki pomiarowe stwarzają wiele trudności, a uzyskiwane wyniki w niektórych przypadkach mogą być obarczone znaczną niepewnością. Powszechnie wykorzystywane są następujące metody pomiarowe:

    • aspiracja pyłu i oznaczenie składu granulometrycznego metodą dyfrakcji laserowej,

    • aspiracja impaktorem kaskadowym,

    • separacji w cyklonach lub filtrach (w tym z kondensacją),

    • pomiar ilości i wielkości cząstek w podczerwieni (Infrared Particle Sizer).

    Dobór metody wyznaczenia składu frakcyjnego pyłu zależy od celu pomiaru:

    • pomiary udziału w pyle ogółem frakcji PM2,5 i PM10: dowolna z opisanych powyżej metod,

    • oznaczenia zawartości metali i ich związków w pyle zawieszonym PM10, dla których określono wartości odniesienia w rozporządzeniu Ministra Środowiska z dnia 26 stycznia 2010 r. w sprawie wartości odniesienia dla niektórych substancji w powietrzu (Dz.U. Nr 16, poz. 87):

    a) pomiary wymagające akredytacji: pobór frakcji PM10 i oznaczenie składu frakcji PM10 lub dla pyłów o jednorodnym składzie (brak znaczenia uziarnienia dla składu) oznaczenie metali i ich związków w pyle ogółem, oznaczenie udziału frakcji PM10 w pyle ogółem (dowolną metodą wg wymagań akredytacji) oraz przeliczenie wyników umożliwiające wiarygodne wskazanie zawartości metali i ich związków w pyle PM10,

    b) pomiary niewymagające akredytacji: zalecana metoda – separacja frakcji PM10 i oznaczenie w niej zawartości metali i ich związków,

    • oznaczenia udziału pyłu zawieszonego PM2,5 i PM10 w pyle ogółem oraz określenie ich składu lub zawartości we frakcjach wybranych związków chemicznych: metoda impaktora kaskadowego lub metoda separacji w cyklonach i na filtrach,

    • oznaczenie składu granulometrycznego w rozbiciu na wiele frakcji (składu pełnego): metoda dyfrakcji laserowej, analiza toru cząstek, metoda impaktora kaskadowego.

    Składy frakcyjne przedstawione w zakładkach poświęconych poszczególnym zbiorom danych (CEIDARDS, US EPA AP-42, Speciate, wyniki badań w Niemczech oraz badań Polskiej Akademii Nauk) zostały uzyskane z wykorzystaniem różnych metod, w tym najczęściej poprzez separację na cyklonach i filtrach, dyfrakcje laserową oraz metodę impaktora kaskadowego. Poniżej przedstawiono krótką charakterystykę poszczególnych metod.

    Dyfrakcja laserowa

    Pobór pyłu prowadzony jest najczęściej na standardowe sączki lub gilzy do pomiaru stężenia pyłu, z których jest on następnie „wymywany” do ośrodka dyspersyjnego z wykorzystaniem metody ultradźwiękowej, po czym poddawany jest oznaczeniu właściwemu na granulometrze laserowym. Metoda analityczna wykorzystuje zjawisko dyfrakcji optycznej światła monochromatycznego (ugięcia fali światła lasera), które zachodzi na granicy ośrodka nieprzepuszczalnego (cząstek stałych) i ośrodka przepuszczalnego (cieczy dyspersyjnej).

    Zaletą metody jest standardowy, prosty pobór pyłu oraz niski koszt oznaczenia. Jej głównymi wadami są natomiast ograniczenia w zakresie stosowania wynikające ze wzrostu niepewności dla pyłów o kształcie ziaren innych niż kuliste oraz trudności z doborem cieczy dyspersyjnej umożliwiającej utworzenie ośrodka optycznego. Przeważnie jako ciecz dyspersyjną wykorzystuje się wodę, alkohol etylowy lub alkohol izopropylowy. Nie jest zatem możliwe wykonanie oznaczenia dla wielu rodzajów substancji rozpuszczalnych w tych cieczach. Wątpliwości mogą również budzić wyniki analiz pyłów o znacznej wilgotności, krystalizujących po poborze podczas suszenia lub transportu próbki. Przeprowadzenie próbki pyłu przekrystalizowanego do ośrodka dyspersyjnego może prowadzić po uzyskania innego rozkładu ziaren niż pierwotny.

    Impaktor kaskadowy

    Jest to metoda bezpośredniego pomiaru składu frakcyjnego pyłu, w przeciwieństwie do metod nieselektywnego poboru pyłu i oznaczania granulometrii próbki pobranego pyłu ogółem. Zasada działania impaktora wykorzystuje różnicę sił bezwładności (zależnej od masy cząstek) i pozostałych sił oddziałujących na cząstki zawarte w gazie przepływającym przez poszczególne półki (stopnie) przyrządu. W zależności od budowy impaktora możliwe jest oznaczenie od 2 do 13 frakcji.

    Oprócz podstawowej zalety selektywnego poboru pyłu o różnym zakresie średnic ziaren, impaktory wyposażone w układ pomiaru ładunków cząstek umożliwiają uzyskanie orientacyjnego obrazu rozkładu uziarnienia on-line (w trakcie wykonywania pomiarów). Selektywne pobranie pyłu umożliwia wykonanie dodatkowych analiz w obrębie poszczególnych frakcji. Metodę pomiaru emisji z wykorzystaniem impaktora kaskadowego opisano w normie VDI 2066-5: 1994 Particulate matter measurement - Dust measurement in flowing gases; particle size selective measurement by impaction method – Cascade impactor.

    Poprawne przeprowadzenie pomiaru wymaga analizy parametrów fizycznych zapylonego gazu (temperatury, wilgotności) oraz własności pyłu (zawilgocenia, zawartości związków lotnych). Znaczenie ww. parametrów dla wyników pomiarów prowadzonych w zakresie charakterystycznym dla powietrza atmosferycznego (pomiary imisji) przedstawiono w pracy Równoważność metod pomiarowych on-line i odniesienia stosowanych do oznaczenia PM10, J. Gołębiewski, K. Szymańska, Ochrona powietrza w teorii i praktyce, PAN, Zabrze, 2012 dostępnej na stronie
    https://ipis.zabrze.pl/dokumenty/konferencje/2012/p.doc.

    Separacja w cyklonach i filtrach

    Separacja w cyklonach i filtrach umożliwia podział pyłu na kilka frakcji i jest stosowana w oznaczeniach emisji i stężeń pyłu na stanowiskach pracy. Metodą z tej grupy stosowaną przez U.S.EPA jest metoda 0020 SASS (source assessment sampling system), umożliwiająca wyodrębnienie z pyłu ogółem 4 frakcji z wykorzystaniem 3 cyklonów i filtra dokładnego. W standardowym układzie wyodrębniana jest frakcja PM1, PM3, PM10 oraz pył pozostały, stanowiący uzupełnienie zbioru do wartości pyłu ogółem. Filtracje prowadzi się również z wykorzystaniem filtrów PTFE. Odrębną grupę metod stanowią: EPA Method 5 oraz EPA Method 202 umożliwiające pobór pyłu całkowitego dającego się aspirować na filtrze oraz po kondensacji. Metody te opisano w zakładce Baza danych U.S. EPA.  Zasady i wyposażenie niezbędne do wykonywania pomiarów emisji ze źródeł stacjonarnych określono w metodzie EPA 201A: Methods for Measurement of Filterable PM10 nad PM2.5 and Measurement of Condensable PM Emissions From Stationary Sources, Final rule December 21, 2010.

    Metoda filtracji poprzedzona separacją wstępną została również uznana jako metoda referencyjna dla pomiarów zapylenia powietrza atmosferycznego przez EC Working Group on Guidance for the Demonstration of Equivalence w dokumencie Guide to the demonstration of equivalence of ambient air monitoring methods (01.2010).

    Pomiar ilości i wielkości cząstek w podczerwieni (Infrared Particle Sizer)

    Metoda polega na pomiarze zmian strumienia promieniowania podczerwonego w strefie pomiarowej - w świetle przechodzącym, w wiązce światła równoległego. Cząstki poruszające się w powietrzu lub cieczy w przestrzeni pomiarowej powodują w wyniku rozproszenia osłabienie strumienia świetlnego, który jest odbierany przez fotodiodę. Każdej cząstce odpowiada impuls elektryczny proporcjonalny do jej wielkości. Każde ziarno skanowane jest kilkanaście razy w czasie przelotu przez przestrzeń pomiarową (pomiar z częstością do 12 000 000 razy na sekundę).

    Zbiór cząstek jest pierwotnie mierzony z podziałem na 4096 klas wymiarowych i przekształcany - kalibrowany na 256 klas wymiarowych dostępnych dla użytkownika. Metoda pozwala na identyfikację wielkości cząstek oraz na ich precyzyjne zliczenie w całym zakresie pomiarowym. Analizatory są kalibrowane przy pomocy odpowiednich wzorców cząstek sferycznych lub dla cząstek o dowolnym kształcie według analizy sitowej.

    Dziedziny w jakich stosuje się metodę zliczania cząstek w podczerwieni przedstawiamy na stronie Pomiary metodą IPS

    Charakterystyka emisji pyłów

    Określając charakterystykę pyłu z poszczególnych źródeł należy pamiętać, że w części z nich może występować naturalna zmienność profilu granulacji, związana np. ze zmianami obciążenia źródła. Zmienność ta nie jest tak znaczna jak w przypadku zależności emisji od warunków procesu, niemniej jednak dla wielu źródeł obliczane wartości wynikowe, to jest ładunki pyłu z poszczególnych frakcji w danym okresie rozliczeniowym powinny tę zmienność uwzględniać. Wobec źródeł o znacznej zmienności przy wyznaczaniu współczynników emisji należy stosować ogólne zasady opisane w dziale Obliczenia emisji lub w dziale Opłaty w zakładce Opłaty na podstawie wyników pomiarów okresowych.

    Aktualności
    • 22
      marzec
      W Dzienniku Ustaw (poz. 497) opublikowane zostało rozporządzenie Rady Ministrów z dnia 20 marca 2020 r. w sprawie utworzenia Ministerstwa Środowiska. Opublikowano również (poz. 498) rozporządzenie Rady Ministrów w sprawie przekształcenia Ministerstwa Aktywów Państwowych polegającego na wyłączeniu komórek organizacyjnych obsługujących sprawy działu energia oraz pracowników obsługujących sprawy tego działu. Wyłączone komórki organizacyjne i pracownicy zostają włączeni do Ministerstwa klimatu na podstawie rozporządzenie Rady Ministrów w sprawie przekształcenia Ministerstwa Klimatu (poz. 499).
    • 20
      marzec
      Z uwagi na stan epidemii w związku z zakażeniami wirusem SARS-CoV-2 (koronawirus) terminy zaplanowanych konferencji i szkoleń zostały zmienione: - szkolenie z modelowania stężeń zanieczyszczeń w powietrzu odbędzie się 15 września br. - Kongres Biomasy 2020 zaplanowany jest na dni 18-19 maja br. Miejsca i programy Wydarzeń nie ulegają zmianie. Dokonane zgłoszenia utrzymują rezerwację miejsc.
    • 26
      luty
      Zapraszamy na I Kongres Biomasy – Wschodnioeuropejskie Spotkanie Kupców i Dostawców, które odbędzie się w Poznaniu 17 i 18 marca. To zupełnie nowa jakość na branżowym rynku konferencyjnym. Mniej prelekcji – więcej rozmów o biznesie! Swój udział w wydarzeniu potwierdzili przedstawiciele branży biomasowej, między innymi z Litwy, Białorusi i Rosji. 
    NEWSLETTER:
    Jeśli chcesz otrzymywać powiadomienia o nowych artykułach zapisz się
     
    Szkolenie Rozprzestrzenianie zanieczyszczeń w powietrzu Poznań 2020
    Kongres Biomasy 2020
    Operat FB

    Zobacz komunikaty JRC / US EPA / EEA / NIK / GDOŚ / GIOŚ / IOŚ / MŚ:

    EPA Settlement with Concrete and Stone Producer Resolves Clean Air Violations in N. Attleborough, Mass. 13.03.2020

    EEA: Assessing air quality through citizen science 12.03.2020

    pył zawieszony PM10
    © EEA

    EPA to Review Lead Ambient Air Standards 12.03.2020

    EEA: Member States must cut emissions across all sectors to achieve EU climate targets by 2030 10.03.2020

    EPA settles diesel emissions cases against three northwest companies 05.03.2020

    EPA: Agency Releases Annual Automotive Trends Report Showing Marginal Increases in Fuel Economy 02.03.2020

    EPA Releases PFAS Action Plan: Program Update 26.02.2020

    EPA Continues to Act on PFAS, Proposes to Close Import Loophole and Protect American Consumers (20.02.2020)

    EPA and OXARC, Inc. settle Clean Air Act violations at company’s Pasco facility (20.02.2020)

    EPA’s 2019 Power Plant Emissions Data Demonstrate Significant Progress (19.02.2020)

    EPA Proposes Additional Amendments to the Regulations for Coal Combustion Residuals (19.02.2020)

    EPA Announces 2019 Annual Environmental Enforcement Results (19.02.2020)

    EPA Announces Community-Scale Air Toxics Monitoring Grant Competition (13.02.2020)

    EEA: The European Pollutant Release and Transfer Register (E-PRTR), Member States reporting under Article 7 of Regulation (EC) No 166/2006 (06.02.2020)

    EEA: Fluorinated greenhouse gases 2019 Data reported by companies on the production, import,export, destruction and feedstock use of fluorinated greenhouse gases in the European Union, 2007-2018 (04.02.2020)

    f-gazy
    © EEA

    EEA: European Union continues to phase-down its use of climate-warming fluorinated gases (04.02.2020)

    EEA: Consumption of controlled ozone-depleting substances (04.02.2020)

    EEA: Transport: increasing oilconsumption andgreenhouse gas emissionshamper EU progresstowards environment andclimate objectives (03.02.2020)

    EPA Settlement with Gulfport Energy to Reduce Emissions from Oil and Natural Gas Operations by 313 Tons Per Year (22.01.2020)

    Zobacz bieżące artykuły w Atmospheric Environment:

    Near-road vehicle emissions air quality monitoring for exposure modeling

    The impact of biomass burning on the oxidative potential of PM2.5 in the metropolitan area of Milan

    Physical and chemical properties of non-exhaust particles generated from wear between pavements and tyres

    Where air quality has been impacted by weather changes in the United States over the last 30 years?

    Emission and simulation of primary fine and submicron particles and water-soluble ions from domestic coal combustion in China

    Zobacz EUR-Lex:

    Sprawozdanie specjalne nr 6/2020 „Zrównoważona mobilność w miastach w UE – bez zaangażowania ze strony państw członkowskich nie będzie możliwa istotna poprawa” 11.03.2020

    Przyjęcie decyzji Komisji w sprawie przekazania przez Zjednoczone Królestwo Wielkiej Brytanii i Irlandii Północnej zmienionego przejściowego planu krajowego, o którym mowa w art. 32 dyrektywy Parlamentu Europejskiego i Rady 2010/75/UE w sprawie emisji przemysłowych 26.02.2020

    Opinia Europejskiego Komitetu Ekonomiczno-Społecznego „Komunikat Komisji do Parlamentu Europejskiego, Rady, Europejskiego Komitetu Ekonomiczno-Społecznego i Komitetu Regionów »Zjednoczeni w realizacji unii energetycznej i działań w dziedzinie klimatu – Przygotowanie fundamentów w celu zapewnienia udanego przejścia na czystą energię«” 11.02.2020

    Opinia Europejskiego Komitetu Ekonomiczno-Społecznego „Bardziej konstruktywna rola społeczeństwa obywatelskiego we wdrażaniu prawa ochrony środowiska” 11.02.2020

    Zawiadomienie dla przedsiębiorstw zamierzających wprowadzać wodorofluorowęglowodory luzem do obrotu w Unii Europejskiej w 2021 r. 06.02.2020

    Opinia Europejskiego Komitetu Regionów – W kierunku zrównoważonej Europy 2030: działania następcze w związku z celami zrównoważonego rozwoju ONZ, transformacją ekologiczną i porozumieniem klimatycznym z Paryża 05.02.2020

    Opinia Europejskiego Komitetu Regionów – Wdrażanie pakietu „Czysta energia”: krajowe plany w dziedzinie energii i klimatu jako narzędzie zarządzania na poziomie lokalnym i terytorialnym w dziedzinie klimatu oraz energii aktywnej i pasywnej 05.02.2020

    Opinia Europejskiego Komitetu Regionów – Inteligentne miasta – nowe wyzwania dla sprawiedliwej transformacji w kierunku neutralności klimatycznej: jak osiągnąć cele zrównoważonego rozwoju? 05.02.2020

    Opinia Europejskiego Komitetu Ekonomiczno-Społecznego „Rozwijanie synergii pomiędzy różnymi planami działania dotyczącymi gospodarki o obiegu zamkniętym” (15.01.2020)