Frakcje pyłu – techniki pomiarowe

    Skład frakcyjny emitowanego pyłu jest specyficzny dla źródła emisji. Zależy od ogółu zjawisk zachodzących w źródle, w szczególności od parametrów procesu, budowy źródła oraz stosowanych procesów oczyszczania odgazów. Wymienione cechy sprawiają, że przyjęcie charakterystyki wyznaczonej dla innego źródła jest bardzo ograniczone i musi zostać poprzedzone dogłębną analizą podobieństwa wszystkich czynników determinujących uziarnienie pyłu. Najmniejszym błędem jest obarczone przejęcie charakterystyki pyłu dla źródeł prostych, o podobnej budowie, niewyposażonych w urządzenia odpylające i pracujących na zbliżonych parametrach, np. kotłów o jednakowej mocy i budowie, zasilanych takim samym paliwem gazowym lub ciekłym, lub stanowisk spawalniczych wykorzystujących tę samą technikę spawania, parametry prądu spawalniczego, rodzaj spawanego materiału i materiału łączącego. W praktyce prawdopodobieństwo uzyskania tak znacznej zgodności jest bardzo małe. Z tego względu dla instalacji, z których emisja pyłu ma duże znacznie dla jakości powietrza, jeśli tylko jest to możliwe, zaleca się wykonanie pomiarów składu granulometrycznego emitowanych pyłów, mimo że obecne techniki pomiarowe stwarzają wiele trudności, a uzyskiwane wyniki w niektórych przypadkach mogą być obarczone znaczną niepewnością. Powszechnie wykorzystywane są następujące metody pomiarowe:

    • aspiracja pyłu i oznaczenie składu granulometrycznego metodą dyfrakcji laserowej,

    • aspiracja impaktorem kaskadowym,

    • separacji w cyklonach lub filtrach (w tym z kondensacją),

    • pomiar ilości i wielkości cząstek w podczerwieni (Infrared Particle Sizer).

    Dobór metody wyznaczenia składu frakcyjnego pyłu zależy od celu pomiaru:

    • pomiary udziału w pyle ogółem frakcji PM2,5 i PM10: dowolna z opisanych powyżej metod,

    • oznaczenia zawartości metali i ich związków w pyle zawieszonym PM10, dla których określono wartości odniesienia w rozporządzeniu Ministra Środowiska z dnia 26 stycznia 2010 r. w sprawie wartości odniesienia dla niektórych substancji w powietrzu (Dz.U. Nr 16, poz. 87):

    a) pomiary wymagające akredytacji: pobór frakcji PM10 i oznaczenie składu frakcji PM10 lub dla pyłów o jednorodnym składzie (brak znaczenia uziarnienia dla składu) oznaczenie metali i ich związków w pyle ogółem, oznaczenie udziału frakcji PM10 w pyle ogółem (dowolną metodą wg wymagań akredytacji) oraz przeliczenie wyników umożliwiające wiarygodne wskazanie zawartości metali i ich związków w pyle PM10,

    b) pomiary niewymagające akredytacji: zalecana metoda – separacja frakcji PM10 i oznaczenie w niej zawartości metali i ich związków,

    • oznaczenia udziału pyłu zawieszonego PM2,5 i PM10 w pyle ogółem oraz określenie ich składu lub zawartości we frakcjach wybranych związków chemicznych: metoda impaktora kaskadowego lub metoda separacji w cyklonach i na filtrach,

    • oznaczenie składu granulometrycznego w rozbiciu na wiele frakcji (składu pełnego): metoda dyfrakcji laserowej, analiza toru cząstek, metoda impaktora kaskadowego.

    Składy frakcyjne przedstawione w zakładkach poświęconych poszczególnym zbiorom danych (CEIDARDS, US EPA AP-42, Speciate, wyniki badań w Niemczech oraz badań Polskiej Akademii Nauk) zostały uzyskane z wykorzystaniem różnych metod, w tym najczęściej poprzez separację na cyklonach i filtrach, dyfrakcje laserową oraz metodę impaktora kaskadowego. Poniżej przedstawiono krótką charakterystykę poszczególnych metod.

    Dyfrakcja laserowa

    Pobór pyłu prowadzony jest najczęściej na standardowe sączki lub gilzy do pomiaru stężenia pyłu, z których jest on następnie „wymywany” do ośrodka dyspersyjnego z wykorzystaniem metody ultradźwiękowej, po czym poddawany jest oznaczeniu właściwemu na granulometrze laserowym. Metoda analityczna wykorzystuje zjawisko dyfrakcji optycznej światła monochromatycznego (ugięcia fali światła lasera), które zachodzi na granicy ośrodka nieprzepuszczalnego (cząstek stałych) i ośrodka przepuszczalnego (cieczy dyspersyjnej).

    Zaletą metody jest standardowy, prosty pobór pyłu oraz niski koszt oznaczenia. Jej głównymi wadami są natomiast ograniczenia w zakresie stosowania wynikające ze wzrostu niepewności dla pyłów o kształcie ziaren innych niż kuliste oraz trudności z doborem cieczy dyspersyjnej umożliwiającej utworzenie ośrodka optycznego. Przeważnie jako ciecz dyspersyjną wykorzystuje się wodę, alkohol etylowy lub alkohol izopropylowy. Nie jest zatem możliwe wykonanie oznaczenia dla wielu rodzajów substancji rozpuszczalnych w tych cieczach. Wątpliwości mogą również budzić wyniki analiz pyłów o znacznej wilgotności, krystalizujących po poborze podczas suszenia lub transportu próbki. Przeprowadzenie próbki pyłu przekrystalizowanego do ośrodka dyspersyjnego może prowadzić po uzyskania innego rozkładu ziaren niż pierwotny.

    Impaktor kaskadowy

    Jest to metoda bezpośredniego pomiaru składu frakcyjnego pyłu, w przeciwieństwie do metod nieselektywnego poboru pyłu i oznaczania granulometrii próbki pobranego pyłu ogółem. Zasada działania impaktora wykorzystuje różnicę sił bezwładności (zależnej od masy cząstek) i pozostałych sił oddziałujących na cząstki zawarte w gazie przepływającym przez poszczególne półki (stopnie) przyrządu. W zależności od budowy impaktora możliwe jest oznaczenie od 2 do 13 frakcji.

    Oprócz podstawowej zalety selektywnego poboru pyłu o różnym zakresie średnic ziaren, impaktory wyposażone w układ pomiaru ładunków cząstek umożliwiają uzyskanie orientacyjnego obrazu rozkładu uziarnienia on-line (w trakcie wykonywania pomiarów). Selektywne pobranie pyłu umożliwia wykonanie dodatkowych analiz w obrębie poszczególnych frakcji. Metodę pomiaru emisji z wykorzystaniem impaktora kaskadowego opisano w normie VDI 2066-5: 1994 Particulate matter measurement - Dust measurement in flowing gases; particle size selective measurement by impaction method – Cascade impactor.

    Poprawne przeprowadzenie pomiaru wymaga analizy parametrów fizycznych zapylonego gazu (temperatury, wilgotności) oraz własności pyłu (zawilgocenia, zawartości związków lotnych). Znaczenie ww. parametrów dla wyników pomiarów prowadzonych w zakresie charakterystycznym dla powietrza atmosferycznego (pomiary imisji) przedstawiono w pracy Równoważność metod pomiarowych on-line i odniesienia stosowanych do oznaczenia PM10, J. Gołębiewski, K. Szymańska, Ochrona powietrza w teorii i praktyce, PAN, Zabrze, 2012 dostępnej na stronie
    https://ipis.zabrze.pl/dokumenty/konferencje/2012/p.doc.

    Separacja w cyklonach i filtrach

    Separacja w cyklonach i filtrach umożliwia podział pyłu na kilka frakcji i jest stosowana w oznaczeniach emisji i stężeń pyłu na stanowiskach pracy. Metodą z tej grupy stosowaną przez U.S.EPA jest metoda 0020 SASS (source assessment sampling system), umożliwiająca wyodrębnienie z pyłu ogółem 4 frakcji z wykorzystaniem 3 cyklonów i filtra dokładnego. W standardowym układzie wyodrębniana jest frakcja PM1, PM3, PM10 oraz pył pozostały, stanowiący uzupełnienie zbioru do wartości pyłu ogółem. Filtracje prowadzi się również z wykorzystaniem filtrów PTFE. Odrębną grupę metod stanowią: EPA Method 5 oraz EPA Method 202 umożliwiające pobór pyłu całkowitego dającego się aspirować na filtrze oraz po kondensacji. Metody te opisano w zakładce Baza danych U.S. EPA.  Zasady i wyposażenie niezbędne do wykonywania pomiarów emisji ze źródeł stacjonarnych określono w metodzie EPA 201A: Methods for Measurement of Filterable PM10 nad PM2.5 and Measurement of Condensable PM Emissions From Stationary Sources, Final rule December 21, 2010.

    Metoda filtracji poprzedzona separacją wstępną została również uznana jako metoda referencyjna dla pomiarów zapylenia powietrza atmosferycznego przez EC Working Group on Guidance for the Demonstration of Equivalence w dokumencie Guide to the demonstration of equivalence of ambient air monitoring methods (01.2010).

    Pomiar ilości i wielkości cząstek w podczerwieni (Infrared Particle Sizer)

    Metoda polega na pomiarze zmian strumienia promieniowania podczerwonego w strefie pomiarowej - w świetle przechodzącym, w wiązce światła równoległego. Cząstki poruszające się w powietrzu lub cieczy w przestrzeni pomiarowej powodują w wyniku rozproszenia osłabienie strumienia świetlnego, który jest odbierany przez fotodiodę. Każdej cząstce odpowiada impuls elektryczny proporcjonalny do jej wielkości. Każde ziarno skanowane jest kilkanaście razy w czasie przelotu przez przestrzeń pomiarową (pomiar z częstością do 12 000 000 razy na sekundę).

    Zbiór cząstek jest pierwotnie mierzony z podziałem na 4096 klas wymiarowych i przekształcany - kalibrowany na 256 klas wymiarowych dostępnych dla użytkownika. Metoda pozwala na identyfikację wielkości cząstek oraz na ich precyzyjne zliczenie w całym zakresie pomiarowym. Analizatory są kalibrowane przy pomocy odpowiednich wzorców cząstek sferycznych lub dla cząstek o dowolnym kształcie według analizy sitowej.

    Dziedziny w jakich stosuje się metodę zliczania cząstek w podczerwieni przedstawiamy na stronie Pomiary metodą IPS

    Charakterystyka emisji pyłów

    Określając charakterystykę pyłu z poszczególnych źródeł należy pamiętać, że w części z nich może występować naturalna zmienność profilu granulacji, związana np. ze zmianami obciążenia źródła. Zmienność ta nie jest tak znaczna jak w przypadku zależności emisji od warunków procesu, niemniej jednak dla wielu źródeł obliczane wartości wynikowe, to jest ładunki pyłu z poszczególnych frakcji w danym okresie rozliczeniowym powinny tę zmienność uwzględniać. Wobec źródeł o znacznej zmienności przy wyznaczaniu współczynników emisji należy stosować ogólne zasady opisane w dziale Obliczenia emisji lub w dziale Opłaty w zakładce Opłaty na podstawie wyników pomiarów okresowych.

    Aktualności
    • 22
      luty
      W Dzienniku Urzędowym Unii Europejskiej (2018/C 054/05) opublikowana została Opinia Europejskiego Komitetu Regionów – Przegląd wdrażania polityki ochrony środowiska. Ocenie została poddana zarówno implementacja polityki i prawodawstwa UE, jak i ich stosowanie. Do następnego etapu przeglądu, zdaniem Europejskiego Komitetu Regionów, powinna zostać włączona ocena wdrażania dyrektywy w sprawie emisji przemysłowych. Pozytywnie oceniono zamiar Komisji Europejskiej, co do pogłębienia wiedzy o jakości administracji publicznej w poszczególnych krajach. Komitet zwraca się również do państw członkowskich, by ułatwiały dokonywanie lokalnych i regionalnych przeglądów wdrażania polityki ochrony środowiska odpowiadających przeglądom krajowym. Jednocześnie, zauważając ograniczone zasoby administracji lokalnej do wystarczającego rozwoju własnego know-how w zakresie wymogów regulacyjnych, Komitet wzywa państwa członkowskie oraz władze lokalne i regionalne do zadbania o to, by zasoby finansowe i ludzkie organów ds. środowiska odpowiadały przekazanym zadaniom. Wzywa władze lokalne i regionalne, by przy wsparciu ze strony państw członkowskich skorzystały z pomocy technicznej w ramach europejskich funduszy strukturalnych i inwestycyjnych w kontekście celu tematycznego 11, aby zwiększyły zdolność instytucjonalną i administracyjną swoich działów ochrony środowiska. Zachęca je również, by wykorzystały program wspierania reform strukturalnych UE do usprawnienia swych organów ds. środowiska. Wzywa władze lokalne i regionalne, by wspierały dobrowolne umowy sektorowe z kluczowymi sektorami przemysłowymi lub umowy między władzami publicznymi a podmiotami społecznymi w celu dostarczenia informacji, rozpoznania problemów i znalezienia rozwiązań. Podkreśla, że UE musi realizować bardziej stanowczą i skuteczną politykę ograniczania zanieczyszczeń u źródła w wielu obszarach polityki ochrony środowiska, gdyż bez tego niemożliwe będzie przestrzeganie różnych aktów prawodawstwa UE dotyczącego norm jakości środowiska na szczeblu lokalnym i regionalnym. Uznaje, że ograniczona dostępność danych nadal powoduje problemy związane z wdrażaniem polityki i prawodawstwa UE, i że władze lokalne i regionalne mają do odegrania kluczową rolę w gromadzeniu wiedzy i danych, dostarczaniu informacji ogółowi społeczeństwa i podnoszeniu świadomości wśród obywateli.
    • 22
      grudzień
      Przedstawiamy postanowienie WSA w Łodzi w sprawie ze skargi na uchwałę Rady Gminy w Czarnożyłach w przedmiocie miejscowego planu zagospodarowania przestrzennego gminy Czarnożyły. Argumentacja stron konfrontuje różne interpretacje uciążliwości wykraczającej poza granice działki, do której inwestor posiada tytuł prawny, przeciwstawiając rozumienie pojęcia jako każde, choćby najmniejsze oddziaływanie z interpretacją uciążliwości ponadnormatywnych, czyli przekraczających normy oddziaływań określonych w obowiązujących przepisach prawa.
    • 22
      grudzień
      Artykuł zawiera fragmenty wyroku WSA w Łodzi z dnia 30 listopada 2017 r. oceniającego Studium uwarunkowań i kierunków zagospodarowania przestrzennego Gminy Ostrówek. Jedną z kluczowych nieprawidłowości było pominięcie w prognozie oddziaływania na środowisko wpływu na ludzi i powietrze projektowanej eksploatacji złoża węgla brunatnego. Sąd za trafne uznał argumenty strony skarżącej, według których w prognozie, mimo uwag do projektu Studium, nie uwzględniono wpływu eksploatacji węgla brunatnego metodą odkrywkową na zanieczyszczenie powietrza w gminie w związku z emisją pyłów, głównie z wyrobiska i zwałowiska zewnętrznego odkrywki. Wobec istotnego naruszenia zasad sporządzania studium WSA w Łodzi stwierdził nieważność w całości studium uwarunkowań i kierunków zagospodarowania przestrzennego.
    NEWSLETTER:
    Jeśli chcesz otrzymywać powiadomienia o nowych artykułach zapisz się
     
    Szkolenia Bilans LZO
    szkolenia rozprzestrzenianie się zanieczyszczeń
    Szkolenia Obliczenia emisji
    Operat FB
    OZE Energiczny Obywatel

    Zobacz komunikaty JRC / US EPA / EEA / NIK:

    EEA: Industrial pollution in Europe (22.02.2018)

    Emisje przemysłowe EEA
    © EEA

    U.S. EPA: Talks Water Quality, Biomass Carbon Neutrality, Forest Procurement Practices (13.02.2018)

    U.S. EPA Shell Chemical LP To Install $10 Million In Pollution Monitoring And Control Equipment At Norco Chemical Facility In Louisiana To Resolve Alleged Federal And State Clean Air Violations (12.02.2018)

    EPA awards University of Washington nearly $3 million to further study air pollution & cardiovascular disease link (08.02.2018)

    U.S. EPA, U.S. Department of Justice Finalize Settlement with Sanger, Calif., Winery over Deadly Ammonia Release (05.02.2018)

    U.S. EPA: Naugatuck, Conn. Incinerator to Control Mercury Emissions Under Settlement (01.02.2018)

    EEA: Europe’s transport sector: Aviation and shipping face big challenges in reducing environmental impacts (31.01.2018)

    EEA Report No 24/2017 Fuel quality monitoring under the Fuel Quality Directive (31.01.2018)

    EPA Publishes Annual Toxics Release Inventory Report and Analysis (30.01.2018)

    EPA: Haverhill, Mass. School Bus Company Reduces Idling Under Settlement (29.01.2018)

    EPA: Reducing Regulatory Burdens: EPA withdraws “once in always in” policy for major sources under Clean Air Act (25.01.2018)

    EU: Nowe środki mające pomóc państwom członkowskim w przestrzeganiu przepisów dotyczących ochrony powietrza atmosferycznego (19.01.2018)

    Zobacz bieżące artykuły w Atmospheric Environment:

    Atmospheric dispersion prediction and source estimation of hazardous gas using artificial neural network, particle swarm optimization and expectation maximization

    Potential of select intermediate-volatility organic compounds and consumer products for secondary organic aerosol and ozone formation under relevant urban conditions

    Sources of nitrous oxide and other climate relevant gases on surface area in a dairy free stall barn with solid floor and outside slurry storage OPEN ACCESS

    Impacts of a large boreal wildfire on ground level atmospheric concentrations of PAHs, VOCs and ozone OPEN ACCESS

    Zobacz EUR-Lex:

    Decyzja Rady (UE) 2018/219 z dnia 23 stycznia 2018 r. w sprawie zawarcia Umowy między Unią Europejską a Konfederacją Szwajcarską w sprawie powiązania ich systemów handlu uprawnieniami do emisji gazów cieplarnianych (16.02.2018)

    Zawiadomienie dla przedsiębiorstw zamierzających w 2019 r. przywozić do Unii Europejskiej lub z niej wywozić substancje kontrolowane, które zubożają warstwę ozonową, oraz dla przedsiębiorstw zamierzających w 2019 r. produkować lub przywozić te substancje do nieodzownych zastosowań laboratoryjnych i analitycznych (15.02.2018)

    Opinia Europejskiego Komitetu Regionów – Przegląd wdrażania polityki ochrony środowiska (13.02.2018)

    Zawiadomienie dla przedsiębiorstw zamierzających wprowadzać wodorofluorowęglowodory luzem do obrotu w Unii Europejskiej w 2019 r. (20.01.2019)

    Decyzja Komisji z dnia 18 stycznia 2018 r. ustanawiająca grupę ekspertów ds. przestrzegania prawa ochrony środowiska i zarządzania środowiskiem (19.01.2018)

    Zaproszenie do składania wniosków oraz powiązane działania w ramach planu pracy Wspólnego Przedsiębiorstwa na rzecz Technologii Ogniw Paliwowych i Technologii Wodorowych na 2018 r. (16.01.2018)

    Decyzja wykonawcza Komisji 2017/2377 z dnia 15 grudnia 2017 r. w sprawie emisji gazów cieplarnianych objętych decyzją Parlamentu Europejskiego i Rady 406/2009/WE przypadających na poszczególne państwa członkowskie za rok 2015 (19.12.2017)

    Decyzja wykonawcza Komisji 2017/2379 z dnia 18 grudnia 2017 r. w sprawie przyjęcia sprawozdania Kanady dotyczącego typowego poziomu emisji gazów cieplarnianych wynikających z uprawy surowców rolnych (19.12.2017)

    Decyzja wykonawcza Komisji  2017/2356 z dnia 15 grudnia 2017 r. w sprawie przyjęcia przedstawionego przez Australię sprawozdania dotyczącego typowego poziomu emisji gazów cieplarnianych wynikających z uprawy surowców rolnych (16.12.2017)

    Decyzja wykonawcza Komisji 2017/2333 z dnia 13 grudnia 2017 r. określająca limity ilościowe oraz przydział kontyngentów substancji kontrolowanych na podstawie rozporządzenia Parlamentu Europejskiego i Rady nr 1005/2009 w sprawie substancji zubożających warstwę ozonową na okres od dnia 1 stycznia do dnia 31 grudnia 2018 r. (15.12.2017)

    Decyzja wykonawcza Komisji 2017/2117 z dnia 21 listopada 2017 r. ustanawiająca konkluzje dotyczące najlepszych dostępnych technik (BAT) w odniesieniu do produkcji wielkotonażowych organicznych substancji chemicznych zgodnie z dyrektywą Parlamentu Europejskiego i Rady 2010/75/UE (07.12.2017)