Frakcje pyłu – pomiary metodą IPS (Infrared Particle Sizer)

    Infrared Particle Sizer logoPomiar ilości i wielkości cząstek w podczerwieni  polega na pomiarze w świetle przechodzącym, na płaszczyźnie, w wiązce światła równoległego. Typowy pomiar jednowymiarowy (1D) umożliwia uzyskanie informacji o maksymalnym wymiarze cząstki  i oparty jest na zasadzie zilustrowanej na poniższym rysunku.

    pomiary emisji pyłu opis metody

    Przestrzeń pomiarowa sondy IPS jest ukształtowana przez układ optyczny A, B do której z nadajnika emitowane jest światło w zakresie podczerwieni. Przestrzeń pomiarowa  może być kształtowana dowolnie, stąd mamy nieograniczony zakres pomiarowy i jest równomiernie oświetlona na całej swojej powierzchni.

    Analizowane cząstki poruszające się w ośrodku powietrza lub cieczy, wlatując w obszar przestrzeni pomiarowej powodują na skutek zjawiska rozproszenia osłabienie strumienia świetlnego odbieranego przez fotodiodę. Miarą wielkości tego osłabienia jest po przetworzeniu amplituda sygnału elektrycznego uformowanego przez układ elektroniczny. Amplituda impulsu odpowiada maksymalnemu wymiarowi cząstki. Po kalibracji sitowej zgodnej z metodą Elsieve, zbiór cząstek może być przestawiony zgodnie z tradycyjną metodą pomiaru na sitach mechanicznych.

    Podstawowy pomiar wielkości cząstek realizowany jest przy pomocy techniki cyfrowej używając przetwornika A/C IPS USB o częstotliwości 500 kHz i rozdzielczości 12 bit. Każde ziarno jest skanowane w czasie przelotu przez przestrzeń pomiarową kilkanaście razy. Przy takiej częstotliwości przetwornika można z dokładnością do 1% określić amplitudę impulsu, co jest równoznaczne z dokładnością pomiaru wielkości (maksymalnego wymiaru) cząstki.

    W metodzie KAMIKA mierzone są wszystkie cząstki z próbki. Dzięki temu wyniki pomiaru są rzeczywiste i uwzględniają każdą, nawet największą cząstkę w rozkładzie. Pomiar jest szybki, cyfrowy - mierzona jest cząstka po cząstce.

    Każdy przyrząd jest kalibrowany przy pomocy wzorców cząstek sferycznych Duke Standards według standardów i atestów firmy Thermo Fisher Scientific Inc., USA (więcej o kalibracji IPS)

    Pomiary  „on line” pyłu PM10 PM2,5 i innych frakcji w spalinach lub w powietrzu

    PM2,5 analizatorAnalizator IPS KF

     Analizator IPS w wersji KF jest urządzeniem online służącym do pomiaru w spalinach pyłu PM10 PM2,5 i innych, niezależnie od jego właściwości fizycznych i chemicznych. Składa się z elementu przewodu kominowego w postaci zwężki z głowicą pomiarową i elektronicznym blokiem pomiarowym sterownym przez komputer. Analizator jest opracowany zgodnie z normą EN13284 z zamianą filtracji wewnętrznej na zewnętrzną.

    PODSTAWOWE PRZEZNACZENIE: W związku z potrzebą badania emisji z małych kotłów domowych o mocy do kilkudziesięciu kW opracowano wersję pyłomierza IPS KF, która może mierzyć  cząstki w sposób optyczny od 0,4 do 300 µm, poruszające się z prędkością od poniżej 1 do 7 m/s. Metoda optyczna umożliwia pomiar z rozdzielczością 12 bit. Analizator jest wyposażony w dodatkowe gniazdo filtra Φ 50 do równoległych pomiarów grawimetrycznych.

    pomiary emisji

    Analizator IPS K (pyłomierz)

    Pyłomierz przeznaczony jest do pomiaru online zanieczyszczenia powietrza lub spalin przepływających przez komin lub kanał. Pomiar analizatorem jest izokinetyczny, można przeprowadzić go jednorazowo dla zaprogramowanej objętości powietrza lub powtarzać automatycznie w sposób ciągły. Monitoring nie jest ograniczony czasowo. Wynikiem pomiaru jest granulacja od 0,4 do 300 µm z podziałem na 256 równych klas, koncentracja liczbowa i wagowa w m3 dla dowolnie wybranych wartości pyłu, np. PM10 PM5 PM2,5 i innych. Przyrząd w automatyczny sposób mierzy zgodnie z normami PN-Z-04030-7 i EN 13284-A1. Można w nim zamontować filtr Φ50 do pomiaru równoległego z pomiarem optycznym.

    Sposób pomiaru analizatora IPS jest złożony i polega na pomiarze najmniejszych cząstek z uwzględnieniem wpływu dyfrakcji laserowej, by dla większych cząstek przejść stopniowo, w sposób ciągły, do pomiaru zmian strumienia promieniowania rozpraszanego przez poruszające się cząstki. W ten sposób uniknięto pewnych wad "dyfrakcji laserowej" stosowanej w pełnym zakresie pomiarowym, gdzie pojedyncze, największe cząstki dają słabe zmiany obrazu dyfrakcyjnego.  W analizatorach IPS nie ma ograniczeń optycznych dla pomiaru pojedynczych małych i dużych cząstek.  Strumień promieniowania w podczerwieni nie tylko identyfikuje wielkość cząstek, ale pozwala również je precyzyjnie zliczyć je w całym zakresie pomiarowym. 

    Każdej cząstce odpowiada impuls elektryczny proporcjonalny do wielkości cząstki. Zbiór cząstek jest pierwotnie mierzony z podziałem na 4096 klas wymiarowych i przekształcany (kalibrowany) na 256 klas wymiarowych dostępnych dla użytkownika.

    PM10

    Analizator IPS GA

    Analizator IPS w wersji GA jest urządzeniem online służącym do pomiaru pyłu PM 10 PM 2,5 i innych frakcji w spalinach. Składa się on z dyfuzora z głowicą pomiarową i elektronicznym blokiem pomiarowym sterowanym przez komputer. Analizator jest opracowany zgodnie z normą EN13284 z zamianą filtracji wewnętrznej na zewnętrzną.

    PODSTAWOWE PRZEZNACZENIE:  Genezą produkcji pyłomierza IPS GA była potrzeba badania emisji z małych silników turbinowych. Analizator może mierzyć  cząstki w sposób optyczny od 0,5 do 300 µm, poruszające się z prędkością od 1 do 27 m/s. Analizator jest wyposażony w gniazdo filtra Φ 50 do równoległych pomiarów grawimetrycznych.

    Analizatory laboratoryjne

    pomiar PM2.5

    Analizator 2DiSA

    Sposób pomiaru analizatora IPS jest złożony i polega na pomiarze najmniejszych cząstek z uwzględnieniem wpływu dyfrakcji laserowej, by dla większych cząstek przejść stopniowo, w sposób ciągły, do pomiaru zmian strumienia promieniowania rozpraszanego przez poruszające się cząstki. W analizatorach IPS nie ma ograniczeń optycznych dla pomiaru pojedynczych małych i dużych cząstek. Strumień promieniowania w podczerwieni nie tylko identyfikuje wielkość cząstek, ale również pozwala je precyzyjnie zliczyć w całym zakresie pomiarowym.

    Do rozdzielania cząstek w procesie dozowania analizatora IPS U stosuje się dozownik ultradźwiękowy w postaci wklęsłego naczynia, w którym dno drga z częstością około  40 kHz i z amplitudą dochodzącą do kilku µm. Zawilgocona substancja podczas wibracji wysusza się, tak, że nawet duża zawartość wilgoci w próbce nie przeszkadza w pomiarach. Dla dozowania możliwie różnorodnych proszków sterowanie amplitudą i ilością impulsów ultradźwiękowych ma około 4000 stanów przejściowych pomiędzy zerem a maksymalnym wzbudzeniem dozownika, co daje 16 000 000 stopni do regulacji dozownika.

     Dla precyzyjnego dozowania niezbędne jest także sterowanie przepływającym powietrzem, które unosi rozdzielone wcześniej cząstki i transportuje je do strefy pomiaru. Sterowanie przepływem powietrza ma około 300 poziomów prędkości. Tak precyzyjny sposób sterowania dozownikiem pozwala szybko (do kilkunastu tysięcy cząstek na sekundę) mierzyć pojedyncze cząstki i uniknąć nakładania się cząstek w strefie pomiaru.

     Bardzo użyteczne jest różnorodne oprogramowanie analizatora IPS. Oprócz programu pomiarowego oferowany jest program optymalizacji dowolnego parametru w funkcji granulacji badanego proszku i program przeliczający granulacje w dowolnej kalibracji np. sitowej, aerometrycznej czy sferycznej. Wyniki pomiarów przedstawione są na kolorowych wykresach i w postaci przejrzystych tabel.

    Zakres pomiarowy: 0,5 - 2000 µm. Ilość klas pomiarowych: 256.

    pomiary emisji pyłu

    Analizator AWK 3D

    Przyrząd składa się z dwóch skrzyżowanych pod kątem prostym optycznych przyrządów pomiarowych, które jednocześnie mierzą przelatującą przez przestrzeń pomiarową cząstkę. Taki przyrząd można było zbudować dzięki innowacyjnej technologii pomiarowej i cyfrowemu przetwarzaniu wyników pomiarów optycznych oferowanych przez firmę KAMIKA. Strumień promieniowania podczerwonego lub laserowego w optycznym przyrządzie pomiarowym jest rozpraszany przez przelatujące ziarna. Po pomiarze zbiór ziaren jest kalibrowany (przeliczany) na 256 klas wymiarowych. Analizator AWK 3D jest wyposażony w elektroniczny blok pomiarowy, do którego podłączone są dwa niezależne tory pomiarowe wielkości cząstek, łącznie z licznikiem pomiarów, co daje możliwość określania kształtu cząstek w trzech wymiarach.

    Zakres pomiarowy: od 0,2 do 31,5 mm.

    PRZEZNACZENIE:

    • do pomiaru w warunkach laboratoryjnych uziarnienia materiałów sypkich np. surowców mineralnych (drobnych kruszyw, żwiru, grubych piasków) węgla, nasion roślin oraz granulatów spożywczych i tworzyw sztucznych) od 0,2 do 31,5 mm,
    • do pełnej symulacji pomiarów według sit mechanicznych,
    • do optymalizacji procesu mielenia czy doboru mieszanek,
    • do określania kształtu ziaren.

    Pomiary imisji: „on line” wymiary i koncentracja cząstek w powietrzu atmosferycznym

    pomiary imisji pyłu PM10

    Analizator IPS P

    Bezobsługowy i zdalnie pracujący w sieci analizator do pomiaru online wymiarów i koncentracji cząstek zawieszonych w powietrzu wraz ze wskazaniem kierunku wiatru w trakcie pomiaru. Pomiar izokinetyczny granulacji i koncentracji pyłu o średnicy ziaren od 0,4 do 300 µm z podziałem na 256 równych klas lub dla dowolnie wybranych wartości pyłu zawieszonego, np. PM10 PM5 PM2,5. Poza pomiarem granulacji i koncentracji pyłu, mierzona jest temperatura, wilgotność powietrza oraz prędkość i kierunek wiatru.

    Sposób pomiaru analizatora IPS jest złożony i polega na pomiarze najmniejszych cząstek z uwzględnieniem wpływu dyfrakcji laserowej, by dla większych cząstek przejść stopniowo, w sposób ciągły, do pomiaru zmian strumienia promieniowania rozpraszanego przez poruszające się cząstki. W analizatorach IPS nie ma ograniczeń optycznych dla pomiaru pojedynczych małych i dużych cząstek. Zbiór cząstek jest pierwotnie mierzony z podziałem na 4096 klas wymiarowych i przekształcany (kalibrowany) na 256 klas wymiarowych dostępnych dla użytkownika.

    Szczegółowe informacje o ww. analizatorach dostępne są na stronie producenta: www.kamika.pl 

    Aktualności
    • 07
      czerwiec
      REECO Poland zaprasza na kolejną – siódmą edycję Targów Energii Odnawialnej i Efektywności Energetycznej, która odbędzie się w dniach 25-27 października  w Warszawskim Centrum EXPO XXI. Tematyka targów skupia się na odnawialnych źródłach energii jak wytwarzanie energii z drewna, biomasy, biogazu i biopaliwa; energia wiatrowa, CHP - kogeneracja; energooszczędne budownictwo i renowacja budynków; energia wodna; pompy ciepła; energia geotermiczna;  energia słoneczna. Podczas imprezy zaprezentowane zostaną innowacje w branży OZE oraz z zakresu efektywności energetycznej i magazynowania energii.
    • 27
      kwiecień
      Artykuł zawiera fragmenty orzeczenia WSA w Olsztynie z dnia 28 marca 2017 r. (II SA/Ol 37/17) oceniającego sposób naliczania opłaty za emisję pyłu pochodzącego ze spalania węgla kamiennego. Przedmiotem postępowania były kotły o mocy do 5 MW, z rusztem stałym i ciągiem naturalnym, z których w pewnych warunkach użytkowania może dochodzić do emisji sadzy. Ocenie sądu podlegało postępowanie ustalające różnicę pomiędzy opłatą wyznaczoną przez Spółkę eksploatującą kotły i marszałka województwa (zweryfikowane przez SKO). Istotą sporu było  odmienne podejście do klasyfikacji pyłu ze spalania węgla i określenia właściwej stawki opłat. Według prowadzącego instalację właściwa była stawka dla pyłów ze spalania paliw (pozycja 53). Według marszałka i SKO stawka dla pyłów węglowo-grafitowych, sadzy (pozycja 52). W uzasadnieniu WSA ocenił również metody uzyskania innych danych technicznych i technologicznych, na podstawie o których organ może dokonywać własnych ustaleń (opinia biegłego) oraz możliwości oceny przez organ administracji lub sąd administracyjny prawidłowości metodologii przyjętej przez biegłego i całościowej oceny opinii jako dowodu w sprawie. Skomentowany został również sposób uczestnictwa strony skarżącej w postępowaniu, ograniczony do kwestionowania dowodów przyjętych przez organ, bez wykazania dowodów przeciwnych.
    • 04
      kwiecień
      Artykuł zawiera szczegółowy opis metodyki wyznaczania emisji niezorganizowanej związków organicznych z oczyszczalni ścieków, opracowanej przez Amerykańską Agencję Ochrony Środowiska (US EPA). Opis teorii modelu uzupełnia przykład obliczeń dla komory zbiorczej ścieków zawierających fenol, pozwalający prześledzić sposób doboru algorytmów obliczeniowych oraz zakres niezbędnych do obliczeń danych. W artykule oceniono również uproszczone metody szacowania emisji niezorganizowanej z oczyszczalni ścieków oraz obliczenia na podstawie pomiarów imisji i modelowania.
    NEWSLETTER:
    Jeśli chcesz otrzymywać powiadomienia o nowych artykułach zapisz się
     
    prawo ochrony środowiska
    Operat FB
    Renexpo 2017
    Efektywność energetyczna
    szkolenie modelowanie
    OZE Energiczny Obywatel

    Zobacz komunikaty JRC / US EPA / EEA / NIK:

    EEA: Emissions of the main air pollutants in Europe (15.08.2017)


    © EEA

    EEA: Heavy metal emissions (15.08.2017)


    © EEA

    EEA: Persistent organic pollutant emissions (15.08.2017)


    © EEA

    EPA: Waterbury, Conn., Incinerator to Control Mercury Emissions (15.08.2017)

    EPA Issues Guidance on State Coal Ash Management Permit Programs (10.08.2017)

    Popioły lotne US EPA

    EPA, DOT Open Comment Period On Reconsideration of GHG Standards for Cars and Light Trucks (10.08.2017)

    EEA: European Union Emissions Trading System (EU ETS) data from EUTL (09.08.2017)

    EPA Continues to Work With States on 2015 Ozone Designations (02.08.2017)

    Air Quality Continues to Improve, While U.S. Economy Continues to Grow (02.08.2017)

    Commission proposes to review all permits of large combustion plants in order to tackle pollution (31.07.2017)

    NIK: Wnioski NIK uwzględnione w kodeksie urbanistyczno-budowlanym (28.07.2017)

    JRC: Potential for further photovoltaic capacity in EU Member States (19.07.2017)

    EEA: Air pollution from agriculture: ammonia exceeds emission limits in 2015 (12.07.2017)

    Zobacz bieżące artykuły w Atmospheric Environment:

    Recent changes in the oxidized to reduced nitrogen ratio in atmospheric precipitation (12.08.2017)

    Trees in urban parks and forests reduce O3, but not NO2 concen- trations in Baltimore, MD, USA (10.08.2017)

    Nitrous acid in a street canyon environment: Sources and contributions to local oxidation capacity (10.08.2017)

    A chemometric investigation of aromatic emission profiles from a marine engine in comparison with residential wood combustion and road traffic: Implications for source apportionment inside and outside sulphur emission control (10.08.2017)

    Evaluation of regional and local atmospheric dispersion models for the analysis of traffic-related air pollution in urban areas (10.08.2017)

    Indicators of residential traffic exposure: Modelled NOx, traffic proximity, and self-reported exposure in RHINE III (09.08.2017)

    Characterizing the seasonal cycle and vertical structure of ozone in Paris, France using four years of ground based LIDAR measurements in the lowermost troposphere (09.08.2017)

    Source contributions to United States ozone and particulate matter over five decades from 1970 to 2020 (08.08.2017)

    Zobacz EUR-Lex:

    Rezolucja Parlamentu Europejskiego w sprawie oszczędnego gospodarowania zasobami: ku gospodarce o obiegu zamkniętym (11.08.2017)

    Rezerwa zapewniająca stabilność rynku dla unijnego systemu handlu uprawnieniami do emisji gazów cieplarnianych (11.08.2017)

    Decyzja wykonawcza Komisji 2017/1402 z dnia 28 lipca 2017 r. w sprawie zatwierdzenia funkcji automatycznego odłączania silnika na biegu jałowym BMW AG jako technologii innowacyjnej umożliwiającej zmniejszenie emisji CO2 pochodzących z samochodów osobowych (29.07.2017)

    Rozporządzenie wykonawcze Komisji  2017/1375 z dnia 25 lipca 2017 r. zmieniające rozporządzenie wykonawcze 1191/2014 określające format i sposób składania sprawozdania, o którym mowa w art. 19 rozporządzenia Parlamentu Europejskiego i Rady (UE) nr 517/2014 w sprawie fluorowanych gazów cieplarnianych (26.07.2017)

    Rozporządzenie Komisji  2017/1347 z dnia 13 lipca 2017 r. w sprawie sprostowania dyrektywy 2007/46/WE, rozporządzenia Komisji  582/2011 oraz rozporządzenia Komisji 2017/1151 uzupełniającego rozporządzenie 715/2007 Parlamentu Europejskiego i Rady w sprawie homologacji typu pojazdów silnikowych w odniesieniu do emisji zanieczyszczeń pochodzących z lekkich pojazdów pasażerskich i użytkowych Euro 5 i Euro 6 (24.07.2017)

    Komunikat Komisji dotyczący ekoprojektu dla produktów do ogrzewania powietrznego, produktów chłodzących, wysokotemperaturowych agregatów chłodniczych i klimakonwektorów wentylatorowych (14.07.2017)

    Rozporządzenie Komisji 2017/1262 z dnia 12 lipca 2017 r. zmieniające rozporządzenie 142/2011 w odniesieniu do wykorzystania obornika zwierząt gospodarskich jako paliwa w obiektach energetycznego spalania (13.07.2017)