Frakcje pyłu – pomiary metodą IPS (Infrared Particle Sizer)

    Infrared Particle Sizer logoPomiar ilości i wielkości cząstek w podczerwieni  polega na pomiarze w świetle przechodzącym, na płaszczyźnie, w wiązce światła równoległego. Typowy pomiar jednowymiarowy (1D) umożliwia uzyskanie informacji o maksymalnym wymiarze cząstki  i oparty jest na zasadzie zilustrowanej na poniższym rysunku.

    pomiary emisji pyłu opis metody

    Przestrzeń pomiarowa sondy IPS jest ukształtowana przez układ optyczny A, B do której z nadajnika emitowane jest światło w zakresie podczerwieni. Przestrzeń pomiarowa  może być kształtowana dowolnie, stąd mamy nieograniczony zakres pomiarowy i jest równomiernie oświetlona na całej swojej powierzchni.

    Analizowane cząstki poruszające się w ośrodku powietrza lub cieczy, wlatując w obszar przestrzeni pomiarowej powodują na skutek zjawiska rozproszenia osłabienie strumienia świetlnego odbieranego przez fotodiodę. Miarą wielkości tego osłabienia jest po przetworzeniu amplituda sygnału elektrycznego uformowanego przez układ elektroniczny. Amplituda impulsu odpowiada maksymalnemu wymiarowi cząstki. Po kalibracji sitowej zgodnej z metodą Elsieve, zbiór cząstek może być przestawiony zgodnie z tradycyjną metodą pomiaru na sitach mechanicznych.

    Podstawowy pomiar wielkości cząstek realizowany jest przy pomocy techniki cyfrowej używając przetwornika A/C IPS USB o częstotliwości 500 kHz i rozdzielczości 12 bit. Każde ziarno jest skanowane w czasie przelotu przez przestrzeń pomiarową kilkanaście razy. Przy takiej częstotliwości przetwornika można z dokładnością do 1% określić amplitudę impulsu, co jest równoznaczne z dokładnością pomiaru wielkości (maksymalnego wymiaru) cząstki.

    W metodzie KAMIKA mierzone są wszystkie cząstki z próbki. Dzięki temu wyniki pomiaru są rzeczywiste i uwzględniają każdą, nawet największą cząstkę w rozkładzie. Pomiar jest szybki, cyfrowy - mierzona jest cząstka po cząstce.

    Każdy przyrząd jest kalibrowany przy pomocy wzorców cząstek sferycznych Duke Standards według standardów i atestów firmy Thermo Fisher Scientific Inc., USA (więcej o kalibracji IPS)

    Pomiary  „on line” pyłu PM10 PM2,5 i innych frakcji w spalinach lub w powietrzu

    PM2,5 analizatorAnalizator IPS KF

     Analizator IPS w wersji KF jest urządzeniem online służącym do pomiaru w spalinach pyłu PM10 PM2,5 i innych, niezależnie od jego właściwości fizycznych i chemicznych. Składa się z elementu przewodu kominowego w postaci zwężki z głowicą pomiarową i elektronicznym blokiem pomiarowym sterownym przez komputer. Analizator jest opracowany zgodnie z normą EN13284 z zamianą filtracji wewnętrznej na zewnętrzną.

    PODSTAWOWE PRZEZNACZENIE: W związku z potrzebą badania emisji z małych kotłów domowych o mocy do kilkudziesięciu kW opracowano wersję pyłomierza IPS KF, która może mierzyć  cząstki w sposób optyczny od 0,4 do 300 µm, poruszające się z prędkością od poniżej 1 do 7 m/s. Metoda optyczna umożliwia pomiar z rozdzielczością 12 bit. Analizator jest wyposażony w dodatkowe gniazdo filtra Φ 50 do równoległych pomiarów grawimetrycznych.

    pomiary emisji

    Analizator IPS K (pyłomierz)

    Pyłomierz przeznaczony jest do pomiaru online zanieczyszczenia powietrza lub spalin przepływających przez komin lub kanał. Pomiar analizatorem jest izokinetyczny, można przeprowadzić go jednorazowo dla zaprogramowanej objętości powietrza lub powtarzać automatycznie w sposób ciągły. Monitoring nie jest ograniczony czasowo. Wynikiem pomiaru jest granulacja od 0,4 do 300 µm z podziałem na 256 równych klas, koncentracja liczbowa i wagowa w m3 dla dowolnie wybranych wartości pyłu, np. PM10 PM5 PM2,5 i innych. Przyrząd w automatyczny sposób mierzy zgodnie z normami PN-Z-04030-7 i EN 13284-A1. Można w nim zamontować filtr Φ50 do pomiaru równoległego z pomiarem optycznym.

    Sposób pomiaru analizatora IPS jest złożony i polega na pomiarze najmniejszych cząstek z uwzględnieniem wpływu dyfrakcji laserowej, by dla większych cząstek przejść stopniowo, w sposób ciągły, do pomiaru zmian strumienia promieniowania rozpraszanego przez poruszające się cząstki. W ten sposób uniknięto pewnych wad "dyfrakcji laserowej" stosowanej w pełnym zakresie pomiarowym, gdzie pojedyncze, największe cząstki dają słabe zmiany obrazu dyfrakcyjnego.  W analizatorach IPS nie ma ograniczeń optycznych dla pomiaru pojedynczych małych i dużych cząstek.  Strumień promieniowania w podczerwieni nie tylko identyfikuje wielkość cząstek, ale pozwala również je precyzyjnie zliczyć je w całym zakresie pomiarowym. 

    Każdej cząstce odpowiada impuls elektryczny proporcjonalny do wielkości cząstki. Zbiór cząstek jest pierwotnie mierzony z podziałem na 4096 klas wymiarowych i przekształcany (kalibrowany) na 256 klas wymiarowych dostępnych dla użytkownika.

    PM10

    Analizator IPS GA

    Analizator IPS w wersji GA jest urządzeniem online służącym do pomiaru pyłu PM 10 PM 2,5 i innych frakcji w spalinach. Składa się on z dyfuzora z głowicą pomiarową i elektronicznym blokiem pomiarowym sterowanym przez komputer. Analizator jest opracowany zgodnie z normą EN13284 z zamianą filtracji wewnętrznej na zewnętrzną.

    PODSTAWOWE PRZEZNACZENIE:  Genezą produkcji pyłomierza IPS GA była potrzeba badania emisji z małych silników turbinowych. Analizator może mierzyć  cząstki w sposób optyczny od 0,5 do 300 µm, poruszające się z prędkością od 1 do 27 m/s. Analizator jest wyposażony w gniazdo filtra Φ 50 do równoległych pomiarów grawimetrycznych.

    Analizatory laboratoryjne

    pomiar PM2.5

    Analizator 2DiSA

    Sposób pomiaru analizatora IPS jest złożony i polega na pomiarze najmniejszych cząstek z uwzględnieniem wpływu dyfrakcji laserowej, by dla większych cząstek przejść stopniowo, w sposób ciągły, do pomiaru zmian strumienia promieniowania rozpraszanego przez poruszające się cząstki. W analizatorach IPS nie ma ograniczeń optycznych dla pomiaru pojedynczych małych i dużych cząstek. Strumień promieniowania w podczerwieni nie tylko identyfikuje wielkość cząstek, ale również pozwala je precyzyjnie zliczyć w całym zakresie pomiarowym.

    Do rozdzielania cząstek w procesie dozowania analizatora IPS U stosuje się dozownik ultradźwiękowy w postaci wklęsłego naczynia, w którym dno drga z częstością około  40 kHz i z amplitudą dochodzącą do kilku µm. Zawilgocona substancja podczas wibracji wysusza się, tak, że nawet duża zawartość wilgoci w próbce nie przeszkadza w pomiarach. Dla dozowania możliwie różnorodnych proszków sterowanie amplitudą i ilością impulsów ultradźwiękowych ma około 4000 stanów przejściowych pomiędzy zerem a maksymalnym wzbudzeniem dozownika, co daje 16 000 000 stopni do regulacji dozownika.

     Dla precyzyjnego dozowania niezbędne jest także sterowanie przepływającym powietrzem, które unosi rozdzielone wcześniej cząstki i transportuje je do strefy pomiaru. Sterowanie przepływem powietrza ma około 300 poziomów prędkości. Tak precyzyjny sposób sterowania dozownikiem pozwala szybko (do kilkunastu tysięcy cząstek na sekundę) mierzyć pojedyncze cząstki i uniknąć nakładania się cząstek w strefie pomiaru.

     Bardzo użyteczne jest różnorodne oprogramowanie analizatora IPS. Oprócz programu pomiarowego oferowany jest program optymalizacji dowolnego parametru w funkcji granulacji badanego proszku i program przeliczający granulacje w dowolnej kalibracji np. sitowej, aerometrycznej czy sferycznej. Wyniki pomiarów przedstawione są na kolorowych wykresach i w postaci przejrzystych tabel.

    Zakres pomiarowy: 0,5 - 2000 µm. Ilość klas pomiarowych: 256.

    pomiary emisji pyłu

    Analizator AWK 3D

    Przyrząd składa się z dwóch skrzyżowanych pod kątem prostym optycznych przyrządów pomiarowych, które jednocześnie mierzą przelatującą przez przestrzeń pomiarową cząstkę. Taki przyrząd można było zbudować dzięki innowacyjnej technologii pomiarowej i cyfrowemu przetwarzaniu wyników pomiarów optycznych oferowanych przez firmę KAMIKA. Strumień promieniowania podczerwonego lub laserowego w optycznym przyrządzie pomiarowym jest rozpraszany przez przelatujące ziarna. Po pomiarze zbiór ziaren jest kalibrowany (przeliczany) na 256 klas wymiarowych. Analizator AWK 3D jest wyposażony w elektroniczny blok pomiarowy, do którego podłączone są dwa niezależne tory pomiarowe wielkości cząstek, łącznie z licznikiem pomiarów, co daje możliwość określania kształtu cząstek w trzech wymiarach.

    Zakres pomiarowy: od 0,2 do 31,5 mm.

    PRZEZNACZENIE:

    • do pomiaru w warunkach laboratoryjnych uziarnienia materiałów sypkich np. surowców mineralnych (drobnych kruszyw, żwiru, grubych piasków) węgla, nasion roślin oraz granulatów spożywczych i tworzyw sztucznych) od 0,2 do 31,5 mm,
    • do pełnej symulacji pomiarów według sit mechanicznych,
    • do optymalizacji procesu mielenia czy doboru mieszanek,
    • do określania kształtu ziaren.

    Pomiary imisji: „on line” wymiary i koncentracja cząstek w powietrzu atmosferycznym

    pomiary imisji pyłu PM10

    Analizator IPS P

    Bezobsługowy i zdalnie pracujący w sieci analizator do pomiaru online wymiarów i koncentracji cząstek zawieszonych w powietrzu wraz ze wskazaniem kierunku wiatru w trakcie pomiaru. Pomiar izokinetyczny granulacji i koncentracji pyłu o średnicy ziaren od 0,4 do 300 µm z podziałem na 256 równych klas lub dla dowolnie wybranych wartości pyłu zawieszonego, np. PM10 PM5 PM2,5. Poza pomiarem granulacji i koncentracji pyłu, mierzona jest temperatura, wilgotność powietrza oraz prędkość i kierunek wiatru.

    Sposób pomiaru analizatora IPS jest złożony i polega na pomiarze najmniejszych cząstek z uwzględnieniem wpływu dyfrakcji laserowej, by dla większych cząstek przejść stopniowo, w sposób ciągły, do pomiaru zmian strumienia promieniowania rozpraszanego przez poruszające się cząstki. W analizatorach IPS nie ma ograniczeń optycznych dla pomiaru pojedynczych małych i dużych cząstek. Zbiór cząstek jest pierwotnie mierzony z podziałem na 4096 klas wymiarowych i przekształcany (kalibrowany) na 256 klas wymiarowych dostępnych dla użytkownika.

    Szczegółowe informacje o ww. analizatorach dostępne są na stronie producenta: www.kamika.pl 

    Aktualności
    • 22
      luty
      W Dzienniku Urzędowym Unii Europejskiej (2018/C 054/05) opublikowana została Opinia Europejskiego Komitetu Regionów – Przegląd wdrażania polityki ochrony środowiska. Ocenie została poddana zarówno implementacja polityki i prawodawstwa UE, jak i ich stosowanie. Do następnego etapu przeglądu, zdaniem Europejskiego Komitetu Regionów, powinna zostać włączona ocena wdrażania dyrektywy w sprawie emisji przemysłowych. Pozytywnie oceniono zamiar Komisji Europejskiej, co do pogłębienia wiedzy o jakości administracji publicznej w poszczególnych krajach. Komitet zwraca się również do państw członkowskich, by ułatwiały dokonywanie lokalnych i regionalnych przeglądów wdrażania polityki ochrony środowiska odpowiadających przeglądom krajowym. Jednocześnie, zauważając ograniczone zasoby administracji lokalnej do wystarczającego rozwoju własnego know-how w zakresie wymogów regulacyjnych, Komitet wzywa państwa członkowskie oraz władze lokalne i regionalne do zadbania o to, by zasoby finansowe i ludzkie organów ds. środowiska odpowiadały przekazanym zadaniom. Wzywa władze lokalne i regionalne, by przy wsparciu ze strony państw członkowskich skorzystały z pomocy technicznej w ramach europejskich funduszy strukturalnych i inwestycyjnych w kontekście celu tematycznego 11, aby zwiększyły zdolność instytucjonalną i administracyjną swoich działów ochrony środowiska. Zachęca je również, by wykorzystały program wspierania reform strukturalnych UE do usprawnienia swych organów ds. środowiska. Wzywa władze lokalne i regionalne, by wspierały dobrowolne umowy sektorowe z kluczowymi sektorami przemysłowymi lub umowy między władzami publicznymi a podmiotami społecznymi w celu dostarczenia informacji, rozpoznania problemów i znalezienia rozwiązań. Podkreśla, że UE musi realizować bardziej stanowczą i skuteczną politykę ograniczania zanieczyszczeń u źródła w wielu obszarach polityki ochrony środowiska, gdyż bez tego niemożliwe będzie przestrzeganie różnych aktów prawodawstwa UE dotyczącego norm jakości środowiska na szczeblu lokalnym i regionalnym. Uznaje, że ograniczona dostępność danych nadal powoduje problemy związane z wdrażaniem polityki i prawodawstwa UE, i że władze lokalne i regionalne mają do odegrania kluczową rolę w gromadzeniu wiedzy i danych, dostarczaniu informacji ogółowi społeczeństwa i podnoszeniu świadomości wśród obywateli.
    • 22
      grudzień
      Przedstawiamy postanowienie WSA w Łodzi w sprawie ze skargi na uchwałę Rady Gminy w Czarnożyłach w przedmiocie miejscowego planu zagospodarowania przestrzennego gminy Czarnożyły. Argumentacja stron konfrontuje różne interpretacje uciążliwości wykraczającej poza granice działki, do której inwestor posiada tytuł prawny, przeciwstawiając rozumienie pojęcia jako każde, choćby najmniejsze oddziaływanie z interpretacją uciążliwości ponadnormatywnych, czyli przekraczających normy oddziaływań określonych w obowiązujących przepisach prawa.
    • 22
      grudzień
      Artykuł zawiera fragmenty wyroku WSA w Łodzi z dnia 30 listopada 2017 r. oceniającego Studium uwarunkowań i kierunków zagospodarowania przestrzennego Gminy Ostrówek. Jedną z kluczowych nieprawidłowości było pominięcie w prognozie oddziaływania na środowisko wpływu na ludzi i powietrze projektowanej eksploatacji złoża węgla brunatnego. Sąd za trafne uznał argumenty strony skarżącej, według których w prognozie, mimo uwag do projektu Studium, nie uwzględniono wpływu eksploatacji węgla brunatnego metodą odkrywkową na zanieczyszczenie powietrza w gminie w związku z emisją pyłów, głównie z wyrobiska i zwałowiska zewnętrznego odkrywki. Wobec istotnego naruszenia zasad sporządzania studium WSA w Łodzi stwierdził nieważność w całości studium uwarunkowań i kierunków zagospodarowania przestrzennego.
    NEWSLETTER:
    Jeśli chcesz otrzymywać powiadomienia o nowych artykułach zapisz się
     
    Szkolenia Bilans LZO
    szkolenia rozprzestrzenianie się zanieczyszczeń
    Szkolenia Obliczenia emisji
    Operat FB
    OZE Energiczny Obywatel

    Zobacz komunikaty JRC / US EPA / EEA / NIK:

    EEA: Industrial pollution in Europe (22.02.2018)

    Emisje przemysłowe EEA
    © EEA

    U.S. EPA: Talks Water Quality, Biomass Carbon Neutrality, Forest Procurement Practices (13.02.2018)

    U.S. EPA Shell Chemical LP To Install $10 Million In Pollution Monitoring And Control Equipment At Norco Chemical Facility In Louisiana To Resolve Alleged Federal And State Clean Air Violations (12.02.2018)

    EPA awards University of Washington nearly $3 million to further study air pollution & cardiovascular disease link (08.02.2018)

    U.S. EPA, U.S. Department of Justice Finalize Settlement with Sanger, Calif., Winery over Deadly Ammonia Release (05.02.2018)

    U.S. EPA: Naugatuck, Conn. Incinerator to Control Mercury Emissions Under Settlement (01.02.2018)

    EEA: Europe’s transport sector: Aviation and shipping face big challenges in reducing environmental impacts (31.01.2018)

    EEA Report No 24/2017 Fuel quality monitoring under the Fuel Quality Directive (31.01.2018)

    EPA Publishes Annual Toxics Release Inventory Report and Analysis (30.01.2018)

    EPA: Haverhill, Mass. School Bus Company Reduces Idling Under Settlement (29.01.2018)

    EPA: Reducing Regulatory Burdens: EPA withdraws “once in always in” policy for major sources under Clean Air Act (25.01.2018)

    EU: Nowe środki mające pomóc państwom członkowskim w przestrzeganiu przepisów dotyczących ochrony powietrza atmosferycznego (19.01.2018)

    Zobacz bieżące artykuły w Atmospheric Environment:

    Atmospheric dispersion prediction and source estimation of hazardous gas using artificial neural network, particle swarm optimization and expectation maximization

    Potential of select intermediate-volatility organic compounds and consumer products for secondary organic aerosol and ozone formation under relevant urban conditions

    Sources of nitrous oxide and other climate relevant gases on surface area in a dairy free stall barn with solid floor and outside slurry storage OPEN ACCESS

    Impacts of a large boreal wildfire on ground level atmospheric concentrations of PAHs, VOCs and ozone OPEN ACCESS

    Zobacz EUR-Lex:

    Decyzja Rady (UE) 2018/219 z dnia 23 stycznia 2018 r. w sprawie zawarcia Umowy między Unią Europejską a Konfederacją Szwajcarską w sprawie powiązania ich systemów handlu uprawnieniami do emisji gazów cieplarnianych (16.02.2018)

    Zawiadomienie dla przedsiębiorstw zamierzających w 2019 r. przywozić do Unii Europejskiej lub z niej wywozić substancje kontrolowane, które zubożają warstwę ozonową, oraz dla przedsiębiorstw zamierzających w 2019 r. produkować lub przywozić te substancje do nieodzownych zastosowań laboratoryjnych i analitycznych (15.02.2018)

    Opinia Europejskiego Komitetu Regionów – Przegląd wdrażania polityki ochrony środowiska (13.02.2018)

    Zawiadomienie dla przedsiębiorstw zamierzających wprowadzać wodorofluorowęglowodory luzem do obrotu w Unii Europejskiej w 2019 r. (20.01.2019)

    Decyzja Komisji z dnia 18 stycznia 2018 r. ustanawiająca grupę ekspertów ds. przestrzegania prawa ochrony środowiska i zarządzania środowiskiem (19.01.2018)

    Zaproszenie do składania wniosków oraz powiązane działania w ramach planu pracy Wspólnego Przedsiębiorstwa na rzecz Technologii Ogniw Paliwowych i Technologii Wodorowych na 2018 r. (16.01.2018)

    Decyzja wykonawcza Komisji 2017/2377 z dnia 15 grudnia 2017 r. w sprawie emisji gazów cieplarnianych objętych decyzją Parlamentu Europejskiego i Rady 406/2009/WE przypadających na poszczególne państwa członkowskie za rok 2015 (19.12.2017)

    Decyzja wykonawcza Komisji 2017/2379 z dnia 18 grudnia 2017 r. w sprawie przyjęcia sprawozdania Kanady dotyczącego typowego poziomu emisji gazów cieplarnianych wynikających z uprawy surowców rolnych (19.12.2017)

    Decyzja wykonawcza Komisji  2017/2356 z dnia 15 grudnia 2017 r. w sprawie przyjęcia przedstawionego przez Australię sprawozdania dotyczącego typowego poziomu emisji gazów cieplarnianych wynikających z uprawy surowców rolnych (16.12.2017)

    Decyzja wykonawcza Komisji 2017/2333 z dnia 13 grudnia 2017 r. określająca limity ilościowe oraz przydział kontyngentów substancji kontrolowanych na podstawie rozporządzenia Parlamentu Europejskiego i Rady nr 1005/2009 w sprawie substancji zubożających warstwę ozonową na okres od dnia 1 stycznia do dnia 31 grudnia 2018 r. (15.12.2017)

    Decyzja wykonawcza Komisji 2017/2117 z dnia 21 listopada 2017 r. ustanawiająca konkluzje dotyczące najlepszych dostępnych technik (BAT) w odniesieniu do produkcji wielkotonażowych organicznych substancji chemicznych zgodnie z dyrektywą Parlamentu Europejskiego i Rady 2010/75/UE (07.12.2017)