Bariery wiatrochronne – eliminacja emisji wywołanej erozją wietrzną

    bariery przeciwwietrzne emisjaJedną z najbardziej skutecznych metod ograniczenia emisji wywołanej erozją wietrzną jest zabezpieczenia powierzchni przed działaniem wiatru o dużej prędkości. W niniejszym artykule prezentujemy czołowych dostawców barier przeciwwietrznych na świecie oraz efekty jakie można uzyskać przy zastosowaniu ich produktów. Oprócz zabezpieczenia hałd i placów składowych bariery wiatrochronne umożliwiają również uzyskanie strefy uspokojonego przepływu powietrza w części zakładu, w którym występuje wysokie zapylenie. W obszarach narażonych na porywy wiatru w czasie wietrznej pogody nagromadzony pył stanowi źródło wtórnej emisji do powietrza oraz może znacząco pogarszać warunki pracy. Eliminacja porywów wiatru pozwala na rozwiązanie obu problemów. Najczęściej zabezpieczanymi obszarami są place składowe i hałdy węgla, kruszyw, żużlu i popiołu oraz obszary wokół źródeł procesowych generujących znaczne ilości pyłu, np. kruszarek, linii sortowniczych, przesiewaczy, itp.

    Charakterystyka emisji wywołanej erozją wietrzną

    Istotą emisji wywołanej erozją wietrzną jest jej okresowy - incydentalny charakter, wynikający ze zjawiska jednorazowego uniesienia cząstek drobnych zawartych w materiale poddanym działaniu wiatru. Do obliczeń emisji z hałd magazynowych i placów składowych stosujemy model oparty na potencjale emisyjnym powierzchni. Zgodnie z jego założeniami epizod emisyjny wykorzystuje całkowicie potencjał erozji, i ponowna emisja jest możliwa dopiero po jego odnowieniu. Odnowienie potencjału emisji następuje zarówno poprzez dodanie nowego materiału (deponowanie, opad pyłu), jak i usunięcie wierzchniej warstwy (pobór materiału) oraz każde naruszenie powierzchni (obsunięcie). Wielkość emisji spowodowanej erozją wietrzną zależy od wielkości narażonej powierzchni i różnicy pomiędzy prędkością tarcia (pochodną prędkości wiatru) i graniczną prędkością tarcia, przy której rozpoczyna się proces erozji (wielkość właściwa dla rodzaju składowanego materiału). Prędkość wiatru mniejsza od prędkości granicznej nie powoduje emisji. Model emisji z erozji wietrznej zawarty jest w metodyce Amerykańskiej Agencji Ochrony Środowiska (US EPA) - Emissions Factors & AP 42, Compilation of Air Pollutant Emission Factors, 13.2.5 Industrial Wind Erosion, U.S. Environmental Protection Agency, 11.2006. Metodyka ta, oparta na wielu pracach badawczych prowadzonych w Stanach Zjednoczonych od lat 50-tych XX wieku, jest powszechnie uznawana za podstawę obliczeń emisji z hałd magazynowych materiałów pylących oraz placów składowych.

    Model US EPA uwzględnia wiele uwarunkowań procesu erozji, w tym szczegółową charakterystykę prędkości wiatru, stopień ekspozycji na wiatr poszczególnych obszarów hałdy oraz częstotliwość zaburzeń powierzchni. Współczynnik emisji pyłu z erozji wietrznej, wyrażony w gramach na powierzchnię materiału, określony jest następującą zależnością:

    bariery wiatrochronne

    gdzie:

    WE – współczynnik  emisji (g/m2),

    k     – mnożnik wielkości cząstek pyłu, który wynosi:

    – dla całkowitego pyłu zawieszonego (TSP):  k=1,0

    – dla pyłu zawieszonego PM10: k=0,5

    – dla pyłu zawieszonego PM2,5: k=0,075

    N    – liczba zaburzeń w ciągu roku,

    Pi     – potencjał erozji wietrznej odpowiadający obserwowanej (lub prawdopodobnej) największej prędkości wiatru (u+) dla okresu między zaburzeniami (g/m2).

    Potencjał erozji wietrznej (P) określony jest zależnością:

    bariery wiatrochronne

    gdzie:

    P – potencjał erozji wietrznej (g/m2),

    u* – prędkość tarcia (m/s),

    ut* – graniczna prędkość tarcia właściwa dla danego rodzaju materiału (m/s).

    Dla wszystkich przypadków, gdy prędkość tarcia nie przekracza granicznej prędkości tarcia, potencjał emisji jest równy zeru, co oznacza, że materiał nie jest porywany z powierzchni hałdy, zgodnie z warunkiem:

    W obliczeniach wykorzystujemy dane o prędkościach wiatru z najbliższej stacji synoptycznej, zapewniającej wyniki o dostatecznej wiarygodności i częstotliwości odczytów. Metodyka US EPA wymaga przyjęcia najwyższej prędkości wiatru w każdym okresie emisji. Przykład różnicy pomiędzy wartościami prędkości średnich godzinowych, średniej prędkości dobowej i prędkością maksymalną z odczytów 10 minutowych przedstawiamy w poniższej tabeli (przykład danych IMGW, wysokość anemometru 10 m).

    Parametr
    Godziny
    01:00
    02:00
    03:00
    04:00
    05:00
    06:00
    07:00
    08:00
    09:00
    10:00
    11:00
    12:00
    13:00
    14:00
    15:00
    16:00
    17:00
    18:00
    19:00
    20:00
    21:00
    22:00
    23:00
    24:00
    Kierunek
    161
    165
    151
    106
    98
    82
    90
    93
    67
    94
    102
    124
    126
    131
    140
    137
    138
    137
    128
    142
    168
    187
    168
    222
    Średnia prędkość godzinowa
    1,7
    1,3
    0,9
    0,7
    2,0
    1,4
    2,1
    1,6
    1,7
    2,8
    3,2
    3,1
    3,0
    2,6
    2,6
    3,2
    1,8
    2,1
    2,5
    2,0
    1,9
    1,9
    1,3
    1,2
    Średnia prędkość dobowa
    2,0
    Prędkość maksy-malna
    6,9
     

    Podział roku na poszczególne okresy, dla których wyznacza się maksymalną prędkość wiatru wynika z charakterystyki pracy hałdy – modelu naruszania powierzchni skutkującej odświeżeniem potencjału emisyjnego. Dla hałd eksploatowanych z wysoką częstotliwością właściwe jest przyjęcie okresów dobowych lub godzinowych i aglomeracja okresów, w których dochodzi do emisji do kilkunastu lub kilkudziesięciu w roku.

    W przypadku wyższych hałd, dla których obszary narażenia na erozję wietrzną znajdują się w granicznej warstwie wiatru poprawne obliczenie prędkości tarcia wiatru wymaga podziału powierzchni hałdy na podobszary reprezentujące różne stop­nie ekspozycji na wiatr. Różnica prędkości powietrza opływającego hałdę dla poszczególnych podobszarów jest określona za pomocą współ­czynnika us/ur stanowiącego iloraz prędkości wiatru nad powierzchnią podobszaru oraz pręd­kości wiatru natarcia. Obraz podobszarów właściwych dla hałd o różnej geometrii i różnych kierunków wiatru przedstawia poniższy rysunek.

    bariery wiatrochronne pył

    Rys. Schemat rozkładu podobszarów o różnym współczynniku zróżnicowania prędkości wiatru (us/ur) w zależności od kształtu hałdy i kierunku wiatru

    Źródło: Compilation of Air Pollutant Emission Factors, 13.2.5 Industrial Wind Erosion Figure 13.2.5-2. Contours of normalized surface windspeeds us/ur

    Skala emisji

    Przykład ilustrujący wielkość emisji z erozji wietrznej może stanowić średniej wielkości plac składowy węgla. Parametry przyjęte do obliczeń wynoszą:

    - powierzchnia aktywna: 30 arów (3 000 m2),

    - częstotliwość odświeżania potencjału emisji: 1/1h,

    - czas eksploatacji: 10 godzin dziennie,

    - graniczna prędkość tarcia: 0,54 m/s,

    - charakterystyka meteorologiczna: prędkość maksymalna w każdej godzinie, z odczytów 10 minutowych.

    Dla wybranego przykładu wielkość emisji rocznej wynosi:

    - pył ogółem (TSP): 2,9 Mg/rok,

    - pył zawieszony PM10: 1,4 Mg/rok,

    - pył zawieszony PM2,5: 0,21 Mg/rok.

    Techniki ograniczania emisji z erozji wietrznej

    Ochrona składowanych materiałów przed erozją wietrzną jest powszechnie rekomendowana jako najlepsza dostępna technika BAT w następujących sektorach:

    - dużych obiektów energetycznego spalania: stosowanie ekranów wiatrochronnych magazynów węgla (Dokument Referencyjny LCP, pkt 4.4.1 Techniki wyładunku, magazynowania i transportu paliwa),

    - produkcji żelaza i stali: zainstalowanie barier przeciwwietrznych lub wykorzystanie naturalnego terenu jako osłony (konkluzje BAT - decyzja nr 2012/135 z dnia 28 lutego 2012 r., BAT 11),

    - produkcji cementu, wapna i tlenku magnezu: przykrywanie lub obudowanie miejsca składowania materiałów sypkich ekranami, ścianami lub barierą pionowo rosnącej zieleni - umieszczenie sztucznych lub naturalnych barier w celu ochrony otwartych pryzm przed wiatrem (konkluzje BAT -  decyzja nr 2013/163 z dnia 26 marca 2013 r., pkt 15a, pkt 41a),

    - przemysłu metali nieżelaznych: stosowanie nasadzeń ochronnych, barier wiatrochronnych lub kopców w celu ograniczenia prędkości wiatru w przypadku składowania na wolnym powietrzu (konkluzje BAT - decyzja nr 2016/1032 z dnia 13 czerwca 2016 r., BAT 7p),

    - produkcji płyt drewnopochodnych: przechowywanie trocin i materiałów, z których łatwo powstaje pył w silosach, pojemnikach, pod zadaszeniem itp. lub w zamkniętych obszarach składowania (konkluzje BAT - decyzja nr 2015/2119 z dnia 20 listopada 2015 r., BAT 23 c).

    - powszechne zastosowanie przy magazynowaniu: stosowanie nasadzeń ochronnych, ogrodzeń wiatrochronnych lub kopców od strony nawietrznej, obniżających prędkość wiatru (Dokument Referencyjny EFS, pkt 4.3.5. Techniki i środki zapobiegania / redukcji pylenia stosowane przy magazynowaniu na powietrzu, pkt 4.3.6.2. Metody ochrony przed wiatrem).

    Spośród wszystkich przedstawionych powyżej metod najwyższą skutecznością charakteryzują się bariery wiatrochronne wykonane ze specjalnie przygotowanych materiałów zmniejszających prędkość wiatru i dobranych pod względem parametrów i lokalizacji do geometrii hałdy.

    Materiał przegród stanowi barierę przepuszczającą częściowo powietrze, dzięki czemu za przegrodą nie powstaje strefa zawirowań. Różnice w opływie przegrody litej i półprzepuszczalnej przedstawia poniższy rysunek.

    przegrody wiatrochronne pył

    Rys. Wizualizacja opływu bariery litej (a) i półprzepuszczalnej (b).

    Źródło: B. J. Billman, S. P. S. Arya, Windbreak effectiveness for storage-pile fugitive-dust control. A Wind Tunel Study, Department of Marine, Earth and Atmospheric Sciences North Carolina State University.

    W przeciwieństwie do barier litych, bariery półprzepuszczalne charakteryzuje również znaczny zasięg strefy cienia aerodynamicznego, przedstawiony na poniższym diagramie.

    ochrona przed wiatrem

    Rys. Obraz pola prędkości wiatru przy braku przeszkody i dla przeszkody półprzepuszczalnej.

    Źródło: Materiały reklamowe Dust Solutions, Inc.

    Dzięki bardzo dużemu zasięgowi strefy uspokojonego przepływu możliwa jest ochrona przed erozją wietrzną całej powierzchni hałdy lub placu składowego. W praktyce oznacza to prawie całkowite wyeliminowanie emisji z erozji wietrznej i związanej z nią uciążliwości. Wyniki badań skuteczności barier wiatrochronnych zawiera między innymi raport Komisji Europejskiej -  Reduction of fugitive dust from coal stockpiles, EUR 17162 EN, A. King, British Coal Corporation, 1996.

    Producenci barier wiatrochronnych

    Oferowane na rynku systemy barier wiatrochronnych oparte są na trzech rodzajach materiałów:

    - siatkach,

    - pasach,

    - blachach otworowych.

    Poniżej przedstawiamy produkty wiodących producentów barier oraz efekty możliwe do osiągnięcia z ich zastosowaniem i przykłady wdrożeń.

    Dust Solutions Inc.

    bariery wiatrochronne DSIDust Solutions Inc. oferuje unikalną technologię siatek poliestrowych z włóknem samoczyszczącym. Dzięki elastyczności bariery ruch przepływającego powietrza powoduje usuwanie pyłu osadzającego się na przegrodzie. Własności te zabezpieczają również barierę przed osadzaniem lodu (śniegu, szronu, szadzi, marznącego deszczu) i nadmiernym wzrostem masy materiału bariery. Oprócz dostawy siatki i podpór oferta Dust Solutions Inc. obejmuje również projekt techniczny w pełnym zakresie, jaki jest wymagany przez zamawiającego (lokalizację, geometrię, wyznaczenie wysokości) oraz projekty podpór. DSI Solutions Inc. oferuje również montaż bariery lub wsparcie wykonawcy oraz serwis pogwarancyjny.

    przegroda wiatrochronna DSIMaksymalna skuteczność redukcji prędkości wiatru siatek DSI mieści się w przedziale od 70 do 80 procent, w zależności od rodzaju materiału. Żywotność siatki dostawca gwarantuje na poziomie 10 lat, zapewniając, że materiał jest zaprojektowany na okres 20 lat i wskazując na doświadczenia klientów, którzy eksploatują barierę przez okres 30 lat. Szczegółowe informacje o produktach Dust Solutions Inc. dostępne są na stronie:

    http://www.nodust.com

     

    WeatherSolve Structures Inc.

    Oferta WeatherSolve Structures Inc. obejmuje kompleksową realizację bariery, począwszy od projektu technicznego (lokalizacji i geometrii) oraz projektu podpór i specyfikacji ich wykonania, poprzez dostawę specjalistycznych elementów systemu, aż do montażu bariery. Elementy konstrukcji wsporczych (pylonów) są przeważnie wykonywane na miejscu. Zakres oferowanych usług obejmuje również serwis pogwarancyjny.

    bariery wiatrochronne WeatherSolve

    Bariery WeatherSolve Structures Inc. wykonane są z siatek polipropylenowych. W zależności od wymaganych parametrów tłumienia wiatru dobierany jest materiał o odpowiednim współczynniku przepuszczalności aerodynamicznej (47%, 40%, 24%). Osadzający się na siatce pył w ograniczonym zakresie zmienia jej własności aerodynamiczne. Przeważnie nie w takim stopniu, aby konieczne było oczyszczania siatki. W razie potrzeby istnieje możliwość usunięcia pyłu za pomocą armatki wodnej.

    przegrody wiatrochronne WeatherSolveDostawca rekomenduje wykonanie dolnej warstwy bariery z litego materiału, np. bloków betonowych oraz zapewnienie pasa wolnego z obu stron bariery w celu usuwania śniegu, który może wytrącać się u podnóża bariery, z jednej lub drugiej strony, w zależności od kierunku wiatru. Minimalna żywotność siatki wynosi 8 lat (10-12 lat przy zapewnieniu bieżących napraw mocowań i odpowiedniego naciągu). Szczegółowe informacje o produktach WeatherSolve Structures Inc. dostępne są na stronie:
    ttp://www.weathersolve.com/

     

    Linear Composites Limited Ltd.

    bariery przeciwwietrzne Linear CompositeOferta Linear Composites Limited Ltd. obejmuje pełne wsparcie projektowe na dowolnym poziomie określonym przez zamawiającego:

    • projekt bariery (wytrzymałość, wysokość, długość, siły itp.),

    • projekt słupów (specyfikacja stali i architektury elementów kratowych lub stężeń),

    • projekt fundamentów (na podstawie danych geotechnicznych oraz odpowiednich norm projektowych).

    Dostawca charakteryzuje skuteczność bariery zarówno poprzez ogólny wskaźnik redukcji prędkości wiatru (wartość przeciętna od 50 % do 60 %, wartość maksymalna do 90 %) oraz w formie szczegółowego profilu prędkości. Oferowana bariera wykonywana jest w systemie szczebli, które stanowią pasy z tworzywa sztucznego (poliestru i polietylenu). Odporność na osadzanie śniegu i lodu zapewnia wysoka wytrzymałość materiału i ruch wywołany wiatrem. Gładka powierzchnia pasów nie dopuszcza również do osadzania znacznych ilości pyłu. W razie potrzeby powierzchnię bariery można oczyścić strumieniem wody.

    przegrody wiatrochronne Linear CompositeDostawca nie udziela gwarancji na określony czas użytkowania materiału, wskazując na swoje doświadczenie, w którym przy prawidłowej eksploatacji bariery, jej żywotność kształtuje się na poziomie 25 lat. Oferta firmy Linear Composites Limited Ltd. dostępna jest na stronie: http://linearcomposites.net/

     

    Anping Yaqi Wire Mesh Co. Ltd.

    bariera wiatrochronna YagiOferta Anping Yaqi Wire Mesh Co. Ltd. obejmuje dostawę elementów barier wiatrochronnych - paneli z blach otworowych. Panele mają szerokości 1,0 m i długości 4,0 m i są oferowane z blachy o grubości 0,5 mm lub 0,8 mm. Elementy przegrody wykonane są ze stali czarnej pokrytej powłoką PCW. Wraz z materiałem bariery Anping Yaqi Wire Mesh Co. Ltd. dostarcza rysunki techniczne i obliczenia wytrzymałościowe przegrody oraz słupów podporowych.

    Ogólny wskaźnik redukcji prędkości powietrza przepływającego przez przegrodę Anping Yaqi Wire Mesh Co. Ltd. wynosi 60%. W przypadku potrzeby oczyszczania powierzchni bariery z osadzającego się pyłu istnieje możliwość zastosowania do tego celu armatki wodnej (przy grubości blachy 0,8 mm).

    przegroda wiatrochronna YagiTrwałość powłoki gwarantowana przez Anping Yaqi Wire Mesh Co. Ltd. wynosi 10 lat. Oferta firmy Anping Yaqi Wire Mesh Co. Ltd. dostępna jest na stronie:

    http://www.yaqiwiremesh.com/

     

     

    Anping Anxin Wire Mesh Co. Ltd.

    bariera wiatrochronna pyłDrugim z głównych dostawców barier w systemie blach otworowych jest firma Anping Anxin Wire Mesh Co. Ltd. Oferowane przez nią elementy mają szerokość 0,9 m i długość 2,0 m, i są wykonane ze stali czarnej, niskowęglowej, pokrytej powłoką PCW. Grubość wykorzystywanej do produkcji blachy to 0,8 mm. Zastosowanie blachy o tej grubości umożliwia okresowe spłukiwanie pyłu z bariery za pomocą strumienia wody pod wysokim ciśnieniem. Dzięki specjalnemu profilowi poszczególne panele i cała bariera wiatrochronna są odporne na obciążenie związane z ciężarem śniegu lub szronu. Firma oprócz dostawy paneli zapewnia również rysunki techniczne i obliczenia wytrzymałościowe przegrody oraz słupów podporowych. Na życzenie zamawiającego możliwe jest dostarczenie jednej sztuki kratownicy podporowej jako przykładu  umożliwiającego ich wykonanie przez lokalna firmę, co pozwala zredukować koszty dostawy bariery. Ogólny wskaźnik redukcji prędkości wiatru przez barierę produkcji Anping Anxin Wire Mesh Co. Ltd. wynosi 75 %. Gwarancja na powłokę paneli obejmuje okres od 8 do 10 lat. Szczegóły oferty dostępne są na stronie http://www.anxinwiremesh.com/

    Próbki materiału barier

    Materiały barier dostarczanych przez: Dust Solutions Inc., WeatherSolve Structures Inc., Linear Composites Limited Ltd. oraz Anping Anxin Wire Mesh Co. Ltd. można obejrzeć w redakcji portalu Wszystkooemisjach.pl (po uprzednim ustaleniu terminu).

    Obliczenia przed decyzją o inwestycji

    Z uwagi na znaczny koszt budowy bariery wiatrochronnej decyzja o inwestycji musi być poprzedzona rzetelną analizą emisji niezorganizowanej ze wszystkich źródeł na terenie obiektu, w tym innych przyczyn emisji niezorganizowanej pyłu, takich jak ruch pojazdów po placach składowych i zanieczyszczonych drogach, przeładunek materiałów pylących oraz eksploatacja otwartych źródeł procesowych.

    Jedynie dysponując wielkościami emisji dla wszystkich źródeł możliwa jest ocena ich udziału w emisji całkowitej oraz w oddziaływaniu na powietrze. Warunkiem uniknięcia błędu w wyborze metod ochronnych jest poprawne wytypowanie źródeł, z których emisja wymaga ograniczenia. Kompleksowa analiza źródeł na terenie zakładu i przewidywanych redukcji emisji wraz z kosztorysem działań stanowią również podstawę optymalizacji nakładów inwestycyjnych i kosztów eksploatacyjnych.

    Więcej informacji o analizach emisji niezorganizowanej dostępnych jest na stronie:
    Programy ograniczenia emisji niezorganizowanej pyłu w zakładach przemysłowych

    Aktualności
    • 05
      październik
      W Dzienniku Ustaw (poz. 1890 - 1893) opublikowane zostały 4 rozporządzenia Ministra Energii z dnia 27 września 2018 r. dotyczące paliw stałych: - w sprawie wymagań jakościowych dla paliw stałych, - w sprawie sposobu pobierania próbek paliw stałych, - w sprawie metod badania jakości paliw stałych, - w sprawie wzoru świadectwa jakości paliw stałych. Rozporządzenia stanowią akty wykonawcze do ustawy z dnia 25 sierpnia 2006 r. o systemie monitorowania i kontrolowania jakości paliw (Dz. U. z 2018 r. poz. 427, 650, 1654 i 1669). © Pixabay
    • 01
      październik
      W Monitorze Polskim (poz. 923) opublikowane zostało coroczne Obwieszczenie Ministra Środowiska w sprawie wykazu miast o liczbie mieszkańców większej niż 100 tysięcy i aglomeracji, w których wartość wskaźnika średniego narażenia przekracza wartość pułapu stężenia ekspozycji… Spośród 30  ocenianych aglomeracji i miast dla 16 wartość wskaźnika średniego narażenia uległa zmniejszeniu (min. dla aglomeracji Wrocławskiej, Warszawskiej), 4 zwiększeniu, a 10 nie uległa zmianie. Pierwszy raz w historii ocen dla  miasta Wałbrzycha i aglomeracji lubelskiej wskaźnik średniego narażenia nie przekroczył pułapu stężenia ekspozycji wynoszącego 20 µg/m3.  Najwyższą wartość wskaźnika w roku 2017 określono dla aglomeracji krakowskiej (32 µg/m3) oraz górnośląskiej (30 µg/m3). Najniższą dla miasta Koszalina (13 µg/m3). Zobacz szczegółowe zestawienie wskaźników © Pixabay
    • 04
      czerwiec
      W Dzienniku Ustaw (poz. 1022) opublikowane zostało Rozporządzenie Ministra Środowiska z dnia 22 maja 2018 r. zmieniające rozporządzenie w sprawie wymagań w zakresie prowadzenia pomiarów wielkości emisji oraz pomiarów ilości pobieranej wody. Rozporządzenie wdraża dyrektywę Parlamentu Europejskiego i Rady (UE) 2015/2193 z dnia 25 listopada 2015 r. w sprawie ograniczenia emisji niektórych zanieczyszczeń do powietrza ze średnich obiektów energetycznego spalania (Dz. Urz. UE L 313). Jedną z kluczowych zmian jest wprowadzenie obowiązku wykonywania okresowych pomiarów emisji, co najmniej raz na trzy lata, ze źródeł spalania paliw o nominalnej mocy cieplnej nie mniejszej niż 1 MW, z których emisja wymaga zgłoszenia. Dla źródeł istniejących pierwsze pomiary przeprowadza się nie później niż do dnia 1 stycznia 2024 r. lub 1 stycznia 2029 r., w zależności od mocy źródła. Dla źródeł nowych pierwsze pomiary przeprowadza się w terminie nie dłuższym niż 4 miesiące od daty uzyskania pozwolenia na wprowadzanie gazów lub pyłów do powietrza, pozwolenia zintegrowanego albo dokonania zgłoszenia, albo od daty rozpoczęcia użytkowania źródła. przejdź do rozporządzenia..
    NEWSLETTER:
    Jeśli chcesz otrzymywać powiadomienia o nowych artykułach zapisz się
     
    Operat FB
    szkolenie f-gazy
    szkolenia rozprzestrzenianie się zanieczyszczeń
    Szkolenia Obliczenia emisji
    Szkolenia Bilans LZO
    OZE Energiczny Obywatel

    Zobacz komunikaty JRC / US EPA / EEA / NIK:

    EPA: Utah Physicians for a Healthy Environment receives $120,000 for air quality project in Summit County, Utah (04.10.2018)

    EEA: Exceedance of air quality standards in urban areas (02.10.2018)

    EEA: Exposure of ecosystems to acidification, eutrophication and ozone (02.10.2018)

    zanieczyszczenie powietrza kwaśne deszcze
    © EEA

    EEA: Rural concentration of the ozone indicator AOT40 for crops, 2015 (02.10.2018)

    ozon zanieczyszczenie powietrza
    © EEA

    EEA: Rural concentration of the ozone indicator AOT40 for forest, 2015 (02.10.2018)

    EEA: Agricultural area in EEA member countries for each ozone exposure class (02.10.2018)

    EEA: Trend in EU mercury emissions to air 1990 2016 (28.09.2018)

    emisja rtęci
    © EEA

    EPA Recognizes Supermarkets Across America for Smart Refrigerant Management (25.09.2018)

    EPA and DOJ Settle with Derive Systems over Vehicle Emissions Control Defeat Devices (24.09.2018)

    EEA: Mercury pollution remains a problem in Europe and globally (19.09.2018)

    EEA: Mercury in Europe's environment (19.09.2018)

    emisja rtęci Polska
     © Pixabay

    NIK: Czysto, cicho, bezszelestnie - czyli strefy czystego transportu po polsku (17.09.2018)

    NIK i ETO o wpływie zanieczyszczenia powietrza na zdrowie obywateli (15.09.2018)

    EEA: Ozone-depleting substances 2018 (14.09.2018)

    emisja freony f-gazy
    © EEA

    EPA: Pittsburgh, Pa. group wins contest for developing air quality monitors in Wildland Fire Sensors Challenge (13.09.2018)

    NIK: Emisja z sektora przemysłowego i z transportu (12.09.2018)

    emisje NIK
    © NIK

    EPA: Manchester, New Hampshire Municipal Waste Incinerator to Reduce Mercury Emissions Under Settlement with United State (12.09.2018)

    Zobacz bieżące artykuły w Atmospheric Environment:

     

    Impact of biomass burning and its control on particulate matter over a city in mainland Southeast Asia during a smog episode

    Impact of particulate matter (PM) emissions from ships, locomotives, and freeways in the communities near the ports of Los Angeles (POLA) and Long Beach (POLB) on the air quality in the Los Angeles county

    Lattice-Boltzmann Large-Eddy Simulation of pollutant dispersion in street canyons including tree planting effects

    kanion uliczny
    © Pixabay

    Emissions of Volatile Organic Compounds from road marking paints

    Zobacz EUR-Lex:

    emisja zanieczyszczeń ETO

    Sprawozdanie specjalne ETO nr 23/2018 Zanieczyszczenie powietrza. Nasze zdrowie nadal nie jest wystarczająco chronione (13.09.2018)

    © ETO

    Decyzja wykonawcza Komisji 2018/1147 z dnia 10 sierpnia 2018 r. ustanawiająca konkluzje dotyczące najlepszych dostępnych technik (BAT) w odniesieniu do przetwarzania odpadów (17.08.2018)

    Opinia Europejskiego Komitetu Ekonomiczno-Społecznego: Działania UE na rzecz poprawy przestrzegania prawa ochrony środowiska i zarządzania środowiskiem (10.08.2019)

    Wyrok Trybunału z dnia 7 czerwca 2018 r. - wniosek o wydanie orzeczenia w trybie prejudycjalnym (Sprawa C-160/17) - Ocena skutków wywieranych przez niektóre plany i programy na środowisko naturalne - Obszar miejski objęty scaleniem - Możliwość odstępstw od obowiązujących założeń zagospodarowania przestrzennego - Zmiana „planów i programów” (30.07.2018)

    Opinia Europejskiego Komitetu Ekonomiczno-Społecznego - Komunikat Komisji: Osiągnięcie mobilności niskoemisyjnej (25.07.2018)

    Wyrok Trybunału Sprawiedliwości z dnia 31 maja 2018 r. – Komisja Europejska / Rzeczpospolita Polska (Uchybienie zobowiązaniom państwa członkowskiego - Dyrektywa 2011/92/WE - Ocena oddziaływania na środowisko odwiertów w celu poszukiwania lub rozpoznawania złóż gazu łupkowego - Głębokie wiercenia - Kryteria selekcji - Ustalenie progów -  Sprawa C-526/16 (23.07.2018)

    Rozporządzenie wykonawcze Komisji (UE) 2018/986 z dnia 3 kwietnia 2018 r. zmieniające rozporządzenie wykonawcze (UE) 2015/504 w odniesieniu do dostosowania przepisów administracyjnych dotyczących homologacji i nadzoru rynku pojazdów rolniczych i leśnych do wartości granicznych emisji dla etapu V (18.07.2018) 

    Rozporządzenie wykonawcze Komisji (UE) 2018/988 z dnia 27 kwietnia 2018 r. w sprawie zmiany i sprostowania rozporządzenia wykonawczego Komisji (UE) 2017/656 określającego wymogi administracyjne dotyczące wartości granicznych emisji i homologacji typu w odniesieniu do silników spalinowych wewnętrznego spalania przeznaczonych do maszyn mobilnych nieporuszających się po drogach zgodnie z rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/1628 (18.07.2018)

    Rozporządzenie delegowane Komisji (UE) 2018/989 z dnia 18 maja 2018 r. w sprawie zmiany i sprostowania rozporządzenia delegowanego Komisji (UE) 2017/654 uzupełniającego rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/1628 odnośnie do wymogów technicznych i ogólnych dotyczących wartości granicznych emisji i homologacji typu w odniesieniu do silników spalinowych wewnętrznego spalania przeznaczonych do maszyn mobilnych nieporuszających się po drogach (18.07.2018)

    Rozporządzenie delegowane Komisji (UE) 2018/985 z dnia 12 lutego 2018 r. uzupełniające rozporządzenie Parlamentu Europejskiego i Rady (UE) nr 167/2013 w odniesieniu do wymogów dotyczących efektywności środowiskowej i osiągów jednostki napędowej pojazdów rolniczych i leśnych oraz ich silników, a także uchylające rozporządzenie delegowane Komisji (UE) 2015/96 (18.07.2018)

    Rozporządzenie delegowane Komisji (UE) 2018/987 z dnia 27 kwietnia 2018 r. w sprawie zmiany i sprostowania rozporządzenia delegowanego (UE) 2017/655 uzupełniającego rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/1628 odnośnie do monitorowania emisji zanieczyszczeń gazowych z silników spalinowych wewnętrznego spalania w trakcie eksploatacji zamontowanych w maszynach mobilnych nieporuszających się po drogach (18.07.2018)