Bariery wiatrochronne – eliminacja emisji wywołanej erozją wietrzną

    bariery przeciwwietrzne emisjaJedną z najbardziej skutecznych metod ograniczenia emisji wywołanej erozją wietrzną jest zabezpieczenia powierzchni przed działaniem wiatru o dużej prędkości. W niniejszym artykule prezentujemy czołowych dostawców barier przeciwwietrznych na świecie oraz efekty jakie można uzyskać przy zastosowaniu ich produktów. Oprócz zabezpieczenia hałd i placów składowych bariery wiatrochronne umożliwiają również uzyskanie strefy uspokojonego przepływu powietrza w części zakładu, w którym występuje wysokie zapylenie. W obszarach narażonych na porywy wiatru w czasie wietrznej pogody nagromadzony pył stanowi źródło wtórnej emisji do powietrza oraz może znacząco pogarszać warunki pracy. Eliminacja porywów wiatru pozwala na rozwiązanie obu problemów. Najczęściej zabezpieczanymi obszarami są place składowe i hałdy węgla, kruszyw, żużlu i popiołu oraz obszary wokół źródeł procesowych generujących znaczne ilości pyłu, np. kruszarek, linii sortowniczych, przesiewaczy, itp.

    Charakterystyka emisji wywołanej erozją wietrzną

    Istotą emisji wywołanej erozją wietrzną jest jej okresowy - incydentalny charakter, wynikający ze zjawiska jednorazowego uniesienia cząstek drobnych zawartych w materiale poddanym działaniu wiatru. Do obliczeń emisji z hałd magazynowych i placów składowych stosujemy model oparty na potencjale emisyjnym powierzchni. Zgodnie z jego założeniami epizod emisyjny wykorzystuje całkowicie potencjał erozji, i ponowna emisja jest możliwa dopiero po jego odnowieniu. Odnowienie potencjału emisji następuje zarówno poprzez dodanie nowego materiału (deponowanie, opad pyłu), jak i usunięcie wierzchniej warstwy (pobór materiału) oraz każde naruszenie powierzchni (obsunięcie). Wielkość emisji spowodowanej erozją wietrzną zależy od wielkości narażonej powierzchni i różnicy pomiędzy prędkością tarcia (pochodną prędkości wiatru) i graniczną prędkością tarcia, przy której rozpoczyna się proces erozji (wielkość właściwa dla rodzaju składowanego materiału). Prędkość wiatru mniejsza od prędkości granicznej nie powoduje emisji. Model emisji z erozji wietrznej zawarty jest w metodyce Amerykańskiej Agencji Ochrony Środowiska (US EPA) - Emissions Factors & AP 42, Compilation of Air Pollutant Emission Factors, 13.2.5 Industrial Wind Erosion, U.S. Environmental Protection Agency, 11.2006. Metodyka ta, oparta na wielu pracach badawczych prowadzonych w Stanach Zjednoczonych od lat 50-tych XX wieku, jest powszechnie uznawana za podstawę obliczeń emisji z hałd magazynowych materiałów pylących oraz placów składowych.

    Model US EPA uwzględnia wiele uwarunkowań procesu erozji, w tym szczegółową charakterystykę prędkości wiatru, stopień ekspozycji na wiatr poszczególnych obszarów hałdy oraz częstotliwość zaburzeń powierzchni. Współczynnik emisji pyłu z erozji wietrznej, wyrażony w gramach na powierzchnię materiału, określony jest następującą zależnością:

    bariery wiatrochronne

    gdzie:

    WE – współczynnik  emisji (g/m2),

    k     – mnożnik wielkości cząstek pyłu, który wynosi:

    – dla całkowitego pyłu zawieszonego (TSP):  k=1,0

    – dla pyłu zawieszonego PM10: k=0,5

    – dla pyłu zawieszonego PM2,5: k=0,075

    N    – liczba zaburzeń w ciągu roku,

    Pi     – potencjał erozji wietrznej odpowiadający obserwowanej (lub prawdopodobnej) największej prędkości wiatru (u+) dla okresu między zaburzeniami (g/m2).

    Potencjał erozji wietrznej (P) określony jest zależnością:

    bariery wiatrochronne

    gdzie:

    P – potencjał erozji wietrznej (g/m2),

    u* – prędkość tarcia (m/s),

    ut* – graniczna prędkość tarcia właściwa dla danego rodzaju materiału (m/s).

    Dla wszystkich przypadków, gdy prędkość tarcia nie przekracza granicznej prędkości tarcia, potencjał emisji jest równy zeru, co oznacza, że materiał nie jest porywany z powierzchni hałdy, zgodnie z warunkiem:

    W obliczeniach wykorzystujemy dane o prędkościach wiatru z najbliższej stacji synoptycznej, zapewniającej wyniki o dostatecznej wiarygodności i częstotliwości odczytów. Metodyka US EPA wymaga przyjęcia najwyższej prędkości wiatru w każdym okresie emisji. Przykład różnicy pomiędzy wartościami prędkości średnich godzinowych, średniej prędkości dobowej i prędkością maksymalną z odczytów 10 minutowych przedstawiamy w poniższej tabeli (przykład danych IMGW, wysokość anemometru 10 m).

    Parametr
    Godziny
    01:00
    02:00
    03:00
    04:00
    05:00
    06:00
    07:00
    08:00
    09:00
    10:00
    11:00
    12:00
    13:00
    14:00
    15:00
    16:00
    17:00
    18:00
    19:00
    20:00
    21:00
    22:00
    23:00
    24:00
    Kierunek
    161
    165
    151
    106
    98
    82
    90
    93
    67
    94
    102
    124
    126
    131
    140
    137
    138
    137
    128
    142
    168
    187
    168
    222
    Średnia prędkość godzinowa
    1,7
    1,3
    0,9
    0,7
    2,0
    1,4
    2,1
    1,6
    1,7
    2,8
    3,2
    3,1
    3,0
    2,6
    2,6
    3,2
    1,8
    2,1
    2,5
    2,0
    1,9
    1,9
    1,3
    1,2
    Średnia prędkość dobowa
    2,0
    Prędkość maksy-malna
    6,9
     

    Podział roku na poszczególne okresy, dla których wyznacza się maksymalną prędkość wiatru wynika z charakterystyki pracy hałdy – modelu naruszania powierzchni skutkującej odświeżeniem potencjału emisyjnego. Dla hałd eksploatowanych z wysoką częstotliwością właściwe jest przyjęcie okresów dobowych lub godzinowych i aglomeracja okresów, w których dochodzi do emisji do kilkunastu lub kilkudziesięciu w roku.

    W przypadku wyższych hałd, dla których obszary narażenia na erozję wietrzną znajdują się w granicznej warstwie wiatru poprawne obliczenie prędkości tarcia wiatru wymaga podziału powierzchni hałdy na podobszary reprezentujące różne stop­nie ekspozycji na wiatr. Różnica prędkości powietrza opływającego hałdę dla poszczególnych podobszarów jest określona za pomocą współ­czynnika us/ur stanowiącego iloraz prędkości wiatru nad powierzchnią podobszaru oraz pręd­kości wiatru natarcia. Obraz podobszarów właściwych dla hałd o różnej geometrii i różnych kierunków wiatru przedstawia poniższy rysunek.

    bariery wiatrochronne pył

    Rys. Schemat rozkładu podobszarów o różnym współczynniku zróżnicowania prędkości wiatru (us/ur) w zależności od kształtu hałdy i kierunku wiatru

    Źródło: Compilation of Air Pollutant Emission Factors, 13.2.5 Industrial Wind Erosion Figure 13.2.5-2. Contours of normalized surface windspeeds us/ur

    Skala emisji

    Przykład ilustrujący wielkość emisji z erozji wietrznej może stanowić średniej wielkości plac składowy węgla. Parametry przyjęte do obliczeń wynoszą:

    - powierzchnia aktywna: 30 arów (3 000 m2),

    - częstotliwość odświeżania potencjału emisji: 1/1h,

    - czas eksploatacji: 10 godzin dziennie,

    - graniczna prędkość tarcia: 0,54 m/s,

    - charakterystyka meteorologiczna: prędkość maksymalna w każdej godzinie, z odczytów 10 minutowych.

    Dla wybranego przykładu wielkość emisji rocznej wynosi:

    - pył ogółem (TSP): 2,9 Mg/rok,

    - pył zawieszony PM10: 1,4 Mg/rok,

    - pył zawieszony PM2,5: 0,21 Mg/rok.

    Techniki ograniczania emisji z erozji wietrznej

    Ochrona składowanych materiałów przed erozją wietrzną jest powszechnie rekomendowana jako najlepsza dostępna technika BAT w następujących sektorach:

    - dużych obiektów energetycznego spalania: stosowanie ekranów wiatrochronnych magazynów węgla (Dokument Referencyjny LCP, pkt 4.4.1 Techniki wyładunku, magazynowania i transportu paliwa),

    - produkcji żelaza i stali: zainstalowanie barier przeciwwietrznych lub wykorzystanie naturalnego terenu jako osłony (konkluzje BAT - decyzja nr 2012/135 z dnia 28 lutego 2012 r., BAT 11),

    - produkcji cementu, wapna i tlenku magnezu: przykrywanie lub obudowanie miejsca składowania materiałów sypkich ekranami, ścianami lub barierą pionowo rosnącej zieleni - umieszczenie sztucznych lub naturalnych barier w celu ochrony otwartych pryzm przed wiatrem (konkluzje BAT -  decyzja nr 2013/163 z dnia 26 marca 2013 r., pkt 15a, pkt 41a),

    - przemysłu metali nieżelaznych: stosowanie nasadzeń ochronnych, barier wiatrochronnych lub kopców w celu ograniczenia prędkości wiatru w przypadku składowania na wolnym powietrzu (konkluzje BAT - decyzja nr 2016/1032 z dnia 13 czerwca 2016 r., BAT 7p),

    - produkcji płyt drewnopochodnych: przechowywanie trocin i materiałów, z których łatwo powstaje pył w silosach, pojemnikach, pod zadaszeniem itp. lub w zamkniętych obszarach składowania (konkluzje BAT - decyzja nr 2015/2119 z dnia 20 listopada 2015 r., BAT 23 c).

    - powszechne zastosowanie przy magazynowaniu: stosowanie nasadzeń ochronnych, ogrodzeń wiatrochronnych lub kopców od strony nawietrznej, obniżających prędkość wiatru (Dokument Referencyjny EFS, pkt 4.3.5. Techniki i środki zapobiegania / redukcji pylenia stosowane przy magazynowaniu na powietrzu, pkt 4.3.6.2. Metody ochrony przed wiatrem).

    Spośród wszystkich przedstawionych powyżej metod najwyższą skutecznością charakteryzują się bariery wiatrochronne wykonane ze specjalnie przygotowanych materiałów zmniejszających prędkość wiatru i dobranych pod względem parametrów i lokalizacji do geometrii hałdy.

    Materiał przegród stanowi barierę przepuszczającą częściowo powietrze, dzięki czemu za przegrodą nie powstaje strefa zawirowań. Różnice w opływie przegrody litej i półprzepuszczalnej przedstawia poniższy rysunek.

    przegrody wiatrochronne pył

    Rys. Wizualizacja opływu bariery litej (a) i półprzepuszczalnej (b).

    Źródło: B. J. Billman, S. P. S. Arya, Windbreak effectiveness for storage-pile fugitive-dust control. A Wind Tunel Study, Department of Marine, Earth and Atmospheric Sciences North Carolina State University.

    W przeciwieństwie do barier litych, bariery półprzepuszczalne charakteryzuje również znaczny zasięg strefy cienia aerodynamicznego, przedstawiony na poniższym diagramie.

    ochrona przed wiatrem

    Rys. Obraz pola prędkości wiatru przy braku przeszkody i dla przeszkody półprzepuszczalnej.

    Źródło: Materiały reklamowe Dust Solutions, Inc.

    Dzięki bardzo dużemu zasięgowi strefy uspokojonego przepływu możliwa jest ochrona przed erozją wietrzną całej powierzchni hałdy lub placu składowego. W praktyce oznacza to prawie całkowite wyeliminowanie emisji z erozji wietrznej i związanej z nią uciążliwości. Wyniki badań skuteczności barier wiatrochronnych zawiera między innymi raport Komisji Europejskiej -  Reduction of fugitive dust from coal stockpiles, EUR 17162 EN, A. King, British Coal Corporation, 1996.

    Producenci barier wiatrochronnych

    Oferowane na rynku systemy barier wiatrochronnych oparte są na trzech rodzajach materiałów:

    - siatkach,

    - pasach,

    - blachach otworowych.

    Poniżej przedstawiamy produkty wiodących producentów barier oraz efekty możliwe do osiągnięcia z ich zastosowaniem i przykłady wdrożeń.

    Dust Solutions Inc.

    bariery wiatrochronne DSIDust Solutions Inc. oferuje unikalną technologię siatek poliestrowych z włóknem samoczyszczącym. Dzięki elastyczności bariery ruch przepływającego powietrza powoduje usuwanie pyłu osadzającego się na przegrodzie. Własności te zabezpieczają również barierę przed osadzaniem lodu (śniegu, szronu, szadzi, marznącego deszczu) i nadmiernym wzrostem masy materiału bariery. Oprócz dostawy siatki i podpór oferta Dust Solutions Inc. obejmuje również projekt techniczny w pełnym zakresie, jaki jest wymagany przez zamawiającego (lokalizację, geometrię, wyznaczenie wysokości) oraz projekty podpór. DSI Solutions Inc. oferuje również montaż bariery lub wsparcie wykonawcy oraz serwis pogwarancyjny.

    przegroda wiatrochronna DSIMaksymalna skuteczność redukcji prędkości wiatru siatek DSI mieści się w przedziale od 70 do 80 procent, w zależności od rodzaju materiału. Żywotność siatki dostawca gwarantuje na poziomie 10 lat, zapewniając, że materiał jest zaprojektowany na okres 20 lat i wskazując na doświadczenia klientów, którzy eksploatują barierę przez okres 30 lat. Szczegółowe informacje o produktach Dust Solutions Inc. dostępne są na stronie:

    http://www.nodust.com

     

    WeatherSolve Structures Inc.

    Oferta WeatherSolve Structures Inc. obejmuje kompleksową realizację bariery, począwszy od projektu technicznego (lokalizacji i geometrii) oraz projektu podpór i specyfikacji ich wykonania, poprzez dostawę specjalistycznych elementów systemu, aż do montażu bariery. Elementy konstrukcji wsporczych (pylonów) są przeważnie wykonywane na miejscu. Zakres oferowanych usług obejmuje również serwis pogwarancyjny.

    bariery wiatrochronne WeatherSolve

    Bariery WeatherSolve Structures Inc. wykonane są z siatek polipropylenowych. W zależności od wymaganych parametrów tłumienia wiatru dobierany jest materiał o odpowiednim współczynniku przepuszczalności aerodynamicznej (47%, 40%, 24%). Osadzający się na siatce pył w ograniczonym zakresie zmienia jej własności aerodynamiczne. Przeważnie nie w takim stopniu, aby konieczne było oczyszczania siatki. W razie potrzeby istnieje możliwość usunięcia pyłu za pomocą armatki wodnej.

    przegrody wiatrochronne WeatherSolveDostawca rekomenduje wykonanie dolnej warstwy bariery z litego materiału, np. bloków betonowych oraz zapewnienie pasa wolnego z obu stron bariery w celu usuwania śniegu, który może wytrącać się u podnóża bariery, z jednej lub drugiej strony, w zależności od kierunku wiatru. Minimalna żywotność siatki wynosi 8 lat (10-12 lat przy zapewnieniu bieżących napraw mocowań i odpowiedniego naciągu). Szczegółowe informacje o produktach WeatherSolve Structures Inc. dostępne są na stronie:
    ttp://www.weathersolve.com/

     

    Linear Composites Limited Ltd.

    bariery przeciwwietrzne Linear CompositeOferta Linear Composites Limited Ltd. obejmuje pełne wsparcie projektowe na dowolnym poziomie określonym przez zamawiającego:

    • projekt bariery (wytrzymałość, wysokość, długość, siły itp.),

    • projekt słupów (specyfikacja stali i architektury elementów kratowych lub stężeń),

    • projekt fundamentów (na podstawie danych geotechnicznych oraz odpowiednich norm projektowych).

    Dostawca charakteryzuje skuteczność bariery zarówno poprzez ogólny wskaźnik redukcji prędkości wiatru (wartość przeciętna od 50 % do 60 %, wartość maksymalna do 90 %) oraz w formie szczegółowego profilu prędkości. Oferowana bariera wykonywana jest w systemie szczebli, które stanowią pasy z tworzywa sztucznego (poliestru i polietylenu). Odporność na osadzanie śniegu i lodu zapewnia wysoka wytrzymałość materiału i ruch wywołany wiatrem. Gładka powierzchnia pasów nie dopuszcza również do osadzania znacznych ilości pyłu. W razie potrzeby powierzchnię bariery można oczyścić strumieniem wody.

    przegrody wiatrochronne Linear CompositeDostawca nie udziela gwarancji na określony czas użytkowania materiału, wskazując na swoje doświadczenie, w którym przy prawidłowej eksploatacji bariery, jej żywotność kształtuje się na poziomie 25 lat. Oferta firmy Linear Composites Limited Ltd. dostępna jest na stronie: http://linearcomposites.net/

     

    Anping Yaqi Wire Mesh Co. Ltd.

    bariera wiatrochronna YagiOferta Anping Yaqi Wire Mesh Co. Ltd. obejmuje dostawę elementów barier wiatrochronnych - paneli z blach otworowych. Panele mają szerokości 1,0 m i długości 4,0 m i są oferowane z blachy o grubości 0,5 mm lub 0,8 mm. Elementy przegrody wykonane są ze stali czarnej pokrytej powłoką PCW. Wraz z materiałem bariery Anping Yaqi Wire Mesh Co. Ltd. dostarcza rysunki techniczne i obliczenia wytrzymałościowe przegrody oraz słupów podporowych.

    Ogólny wskaźnik redukcji prędkości powietrza przepływającego przez przegrodę Anping Yaqi Wire Mesh Co. Ltd. wynosi 60%. W przypadku potrzeby oczyszczania powierzchni bariery z osadzającego się pyłu istnieje możliwość zastosowania do tego celu armatki wodnej (przy grubości blachy 0,8 mm).

    przegroda wiatrochronna YagiTrwałość powłoki gwarantowana przez Anping Yaqi Wire Mesh Co. Ltd. wynosi 10 lat. Oferta firmy Anping Yaqi Wire Mesh Co. Ltd. dostępna jest na stronie:

    http://www.yaqiwiremesh.com/

     

     

    Anping Anxin Wire Mesh Co. Ltd.

    bariera wiatrochronna pyłDrugim z głównych dostawców barier w systemie blach otworowych jest firma Anping Anxin Wire Mesh Co. Ltd. Oferowane przez nią elementy mają szerokość 0,9 m i długość 2,0 m, i są wykonane ze stali czarnej, niskowęglowej, pokrytej powłoką PCW. Grubość wykorzystywanej do produkcji blachy to 0,8 mm. Zastosowanie blachy o tej grubości umożliwia okresowe spłukiwanie pyłu z bariery za pomocą strumienia wody pod wysokim ciśnieniem. Dzięki specjalnemu profilowi poszczególne panele i cała bariera wiatrochronna są odporne na obciążenie związane z ciężarem śniegu lub szronu. Firma oprócz dostawy paneli zapewnia również rysunki techniczne i obliczenia wytrzymałościowe przegrody oraz słupów podporowych. Na życzenie zamawiającego możliwe jest dostarczenie jednej sztuki kratownicy podporowej jako przykładu  umożliwiającego ich wykonanie przez lokalna firmę, co pozwala zredukować koszty dostawy bariery. Ogólny wskaźnik redukcji prędkości wiatru przez barierę produkcji Anping Anxin Wire Mesh Co. Ltd. wynosi 75 %. Gwarancja na powłokę paneli obejmuje okres od 8 do 10 lat. Szczegóły oferty dostępne są na stronie http://www.anxinwiremesh.com/

    Próbki materiału barier

    Materiały barier dostarczanych przez: Dust Solutions Inc., WeatherSolve Structures Inc., Linear Composites Limited Ltd. oraz Anping Anxin Wire Mesh Co. Ltd. można obejrzeć w redakcji portalu Wszystkooemisjach.pl (po uprzednim ustaleniu terminu).

    Obliczenia przed decyzją o inwestycji

    Z uwagi na znaczny koszt budowy bariery wiatrochronnej decyzja o inwestycji musi być poprzedzona rzetelną analizą emisji niezorganizowanej ze wszystkich źródeł na terenie obiektu, w tym innych przyczyn emisji niezorganizowanej pyłu, takich jak ruch pojazdów po placach składowych i zanieczyszczonych drogach, przeładunek materiałów pylących oraz eksploatacja otwartych źródeł procesowych.

    Jedynie dysponując wielkościami emisji dla wszystkich źródeł możliwa jest ocena ich udziału w emisji całkowitej oraz w oddziaływaniu na powietrze. Warunkiem uniknięcia błędu w wyborze metod ochronnych jest poprawne wytypowanie źródeł, z których emisja wymaga ograniczenia. Kompleksowa analiza źródeł na terenie zakładu i przewidywanych redukcji emisji wraz z kosztorysem działań stanowią również podstawę optymalizacji nakładów inwestycyjnych i kosztów eksploatacyjnych.

    Więcej informacji o analizach emisji niezorganizowanej dostępnych jest na stronie:
    Programy ograniczenia emisji niezorganizowanej pyłu w zakładach przemysłowych

    Aktualności
    • 05
      listopad
      W Monitorze Polskim (poz. 1038) opublikowane zostało Obwieszczenie Ministra Środowiska z dnia 3 października 2018 r. w sprawie wysokości stawek opłat za korzystanie ze środowiska na rok 2019. W stosunku do roku 2018 nieznacznej zmianie ulegną jednostkowe stawki opłat za gazy lub pyły wprowadzane do powietrza (tabela A) oraz stawki ryczałtowe (tabela B, C, D, E) załącznika nr 2 do rozporządzenia. © Pixabay
    • 05
      październik
      W Dzienniku Ustaw (poz. 1890 - 1893) opublikowane zostały 4 rozporządzenia Ministra Energii z dnia 27 września 2018 r. dotyczące paliw stałych: - w sprawie wymagań jakościowych dla paliw stałych, - w sprawie sposobu pobierania próbek paliw stałych, - w sprawie metod badania jakości paliw stałych, - w sprawie wzoru świadectwa jakości paliw stałych. Rozporządzenia stanowią akty wykonawcze do ustawy z dnia 25 sierpnia 2006 r. o systemie monitorowania i kontrolowania jakości paliw (Dz. U. z 2018 r. poz. 427, 650, 1654 i 1669). © Pixabay
    • 01
      październik
      W Monitorze Polskim (poz. 923) opublikowane zostało coroczne Obwieszczenie Ministra Środowiska w sprawie wykazu miast o liczbie mieszkańców większej niż 100 tysięcy i aglomeracji, w których wartość wskaźnika średniego narażenia przekracza wartość pułapu stężenia ekspozycji… Spośród 30  ocenianych aglomeracji i miast dla 16 wartość wskaźnika średniego narażenia uległa zmniejszeniu (min. dla aglomeracji Wrocławskiej, Warszawskiej), 4 zwiększeniu, a 10 nie uległa zmianie. Pierwszy raz w historii ocen dla  miasta Wałbrzycha i aglomeracji lubelskiej wskaźnik średniego narażenia nie przekroczył pułapu stężenia ekspozycji wynoszącego 20 µg/m3.  Najwyższą wartość wskaźnika w roku 2017 określono dla aglomeracji krakowskiej (32 µg/m3) oraz górnośląskiej (30 µg/m3). Najniższą dla miasta Koszalina (13 µg/m3). Zobacz szczegółowe zestawienie wskaźników
    NEWSLETTER:
    Jeśli chcesz otrzymywać powiadomienia o nowych artykułach zapisz się
     
    Operat FB
    szkolenie f-gazy
    szkolenia rozprzestrzenianie się zanieczyszczeń
    Szkolenia Obliczenia emisji
    Szkolenia Bilans LZO
    OZE Energiczny Obywatel

    Zobacz komunikaty JRC / US EPA / EEA / NIK:

    NIK: O jakości powietrza w Polsce i Europie na COP24 (07.12.2018)

    NIK zanieczyszczenie powietrza
    © NIK

    EPA Proposes 111(b) Revisions to Advance Clean Energy Technology (06.12.2018)

    EPA Finalizes RFS Volumes for 2019 and Biomass Based Diesel Volumes for 2020 (30.11.2018)

    EPA, Wheeler Rock Products settle Clean Air Act permit violations (29.11.2018)

    Fact-Check: Obama Administration Pushed "Worst-Case Scenario" In Climate Assessment (28.11.2018)

    EEA: Annual mean PM2.5 concentrations observed at background stations, 2016 (22.11.2018)

    PM2,5 tło stacje tła EEA
    © EEA

    EEA: 90.4 percentile of daily mean PM10 concentrations observed at background stations, 2016 (22.11.2018)

    PM2,5 tło stacje tła EEA percentyl
    © EEA

    EEA: Progress of EU transport sector towards itsenvironment and climate objectives (22.11.2018)

    EEA: Electric vehicles from life cycle and circular economy perspectivesTERM 2018: Transport and Environment Reporting Mechanism (TERM) repor (22.11.2018)

    EPA Takes Steps to Improve Regulations for Wood Heaters (21.11.2018)

    NIK: Kto truje w Łęgnowie - rejon dawnych bydgoskich Zakładów Chemicznych „Zachem”? (19.11.2018)

    EPA Continues Work to Protect Community Near the Tonawanda Coke Facility (15.11.2018)

    EPA Announces Availability of $1.5 Million in Environmental Justice Small Grants (15.11.2018)

    NIK o rozwoju sektora odnawialnych źródeł energii (15.11.2018)

    ICYMI: The Washington Post - EPA to Weigh Tougher Pollution Standards for Heavy-Duty Trucks (14.11.2018)

    NIK z Bankiem Światowym - Na ratunek czystemu powietrzu (12.11.2018)

    EEA: Netherlands - Industrial pollution profile 2018 (09.11.2018)

    EEA: Sweden - Industrial pollution profile 2018 (09.11.2018)

    EPA Settlement with Yonkers Dry Cleaner Means Company to Operate as “Green” Facility (08.11.2018)

    EPA: MPLX LP To Cut Harmful Air Pollution At Natural Gas Processing Facilities Improving Air Quality For Communities In Six States (01.11.2018)

    Zobacz bieżące artykuły w Atmospheric Environment:

    Impacts of ambient temperature, DPF regeneration, and traffic congestion on NOx emissions from a Euro 6-compliant diesel vehicle equipped with an LNT under real-world driving conditions

    Machine learning-based rapid response tools for regional air pollution modelling

    Validation of ammonia diffusive and pumped samplers in a controlled atmosphere test facility using traceable Primary Standard Gas Mixtures

    Flaring emissions in Africa: Distribution, evolution and comparison with current inventories

    MAX-DOAS measurements and vertical profiles of glyoxal and formaldehyde in Madrid, Spain

    Global changes in the diurnal cycle of surface ozone

    Evaluating near-roadway concentra- tions of diesel-related air pollution using RLINE

    Zobacz EUR-Lex:

    Decyzja wykonawcza Komisji (UE) 2018/1876 z dnia 29 listopada 2018 r. w sprawie zatwierdzenia, na podstawie rozporządzenia Parlamentu Europejskiego i Rady (UE) nr 510/2011, technologii stosowanej w wysokosprawnych alternatorach 12-woltowych przeznaczonych do stosowania w lekkich samochodach dostawczych napędzanych przez konwencjonalny silnik spalinowy jako technologii innowacyjnej umożliwiającej zmniejszenie emisji CO2 pochodzących z lekkich samochodów dostawczych (30.11.2018)

    Decyzja wykonawcza Komisji (UE) 2018/1855 z dnia 27 listopada 2018 r. w sprawie emisji gazów cieplarnianych objętych decyzją Parlamentu Europejskiego i Rady nr 2009/406/WE przypadających na poszczególne państwa członkowskie za rok 2016 (28.11.2018)

    Rozporządzenie Komisji (UE) 2018/1832 z dnia 5 listopada 2018 r. zmieniające dyrektywę Parlamentu Europejskiego i Rady 2007/46/WE, rozporządzenie Komisji (WE) nr 692/2008 i rozporządzenie Komisji (UE) 2017/1151 w celu udoskonalenia badań i procedur homologacji typu w odniesieniu do lekkich pojazdów pasażerskich i użytkowych, w tym badań i procedur dotyczących zgodności eksploatacyjnej i emisji zanieczyszczeń w rzeczywistych warunkach jazdy, a także wprowadzenia urządzeń służących do monitorowania zużycia paliwa i energii elektrycznej (27.11.2018)

    DECYZJA RADY (UE) 2018/1730 z dnia 12 listopada 2018 r.  dotycząca stanowiska, które należy zająć w imieniu Unii Europejskiej na drugim posiedzeniu Konferencji Stron Konwencji z Minamaty w sprawie rtęci w związku z przyjęciem wytycznych w sprawie przejściowego składowania rtęci innej niż rtęć odpadowa w sposób bezpieczny dla środowiska (16.11.2018)

    WSPÓLNE PRZEDSIĘWZIĘCIE NA RZECZ TECHNOLOGII OGNIW PALIWOWYCH I TECHNOLOGII WODOROWYCH 2 - publikacja końcowych sprawozdań finansowych za rok budżetowy 2017 (14.11.2018)

    WSPÓLNE PRZEDSIĘWZIĘCIE CZYSTE NIEBO 2 - publikacja końcowych sprawozdań finansowych za rok budżetowy 2017 (14.11.2018)

    Sprawozdanie specjalne Trybunału Obrachunkowego nr 24/2018 Wykorzystanie wychwytywania i składowania dwutlenku węgla oraz innowacyjnych odnawialnych źródeł energii w projektach demonstracyjnych na skalę komercyjną w UE – w ostatnim dziesięcioleciu nie zostały osiągnięte zamierzone postępy (29.10.2018)