Bariery wiatrochronne – eliminacja emisji wywołanej erozją wietrzną

    bariery przeciwwietrzne emisjaJedną z najbardziej skutecznych metod ograniczenia emisji wywołanej erozją wietrzną jest zabezpieczenia powierzchni przed działaniem wiatru o dużej prędkości. W niniejszym artykule prezentujemy czołowych dostawców barier przeciwwietrznych na świecie oraz efekty jakie można uzyskać przy zastosowaniu ich produktów. Oprócz zabezpieczenia hałd i placów składowych bariery wiatrochronne umożliwiają również uzyskanie strefy uspokojonego przepływu powietrza w części zakładu, w którym występuje wysokie zapylenie. W obszarach narażonych na porywy wiatru w czasie wietrznej pogody nagromadzony pył stanowi źródło wtórnej emisji do powietrza oraz może znacząco pogarszać warunki pracy. Eliminacja porywów wiatru pozwala na rozwiązanie obu problemów. Najczęściej zabezpieczanymi obszarami są place składowe i hałdy węgla, kruszyw, żużlu i popiołu oraz obszary wokół źródeł procesowych generujących znaczne ilości pyłu, np. kruszarek, linii sortowniczych, przesiewaczy, itp.

    Charakterystyka emisji wywołanej erozją wietrzną

    Istotą emisji wywołanej erozją wietrzną jest jej okresowy - incydentalny charakter, wynikający ze zjawiska jednorazowego uniesienia cząstek drobnych zawartych w materiale poddanym działaniu wiatru. Do obliczeń emisji z hałd magazynowych i placów składowych stosujemy model oparty na potencjale emisyjnym powierzchni. Zgodnie z jego założeniami epizod emisyjny wykorzystuje całkowicie potencjał erozji, i ponowna emisja jest możliwa dopiero po jego odnowieniu. Odnowienie potencjału emisji następuje zarówno poprzez dodanie nowego materiału (deponowanie, opad pyłu), jak i usunięcie wierzchniej warstwy (pobór materiału) oraz każde naruszenie powierzchni (obsunięcie). Wielkość emisji spowodowanej erozją wietrzną zależy od wielkości narażonej powierzchni i różnicy pomiędzy prędkością tarcia (pochodną prędkości wiatru) i graniczną prędkością tarcia, przy której rozpoczyna się proces erozji (wielkość właściwa dla rodzaju składowanego materiału). Prędkość wiatru mniejsza od prędkości granicznej nie powoduje emisji. Model emisji z erozji wietrznej zawarty jest w metodyce Amerykańskiej Agencji Ochrony Środowiska (US EPA) - Emissions Factors & AP 42, Compilation of Air Pollutant Emission Factors, 13.2.5 Industrial Wind Erosion, U.S. Environmental Protection Agency, 11.2006. Metodyka ta, oparta na wielu pracach badawczych prowadzonych w Stanach Zjednoczonych od lat 50-tych XX wieku, jest powszechnie uznawana za podstawę obliczeń emisji z hałd magazynowych materiałów pylących oraz placów składowych.

    Model US EPA uwzględnia wiele uwarunkowań procesu erozji, w tym szczegółową charakterystykę prędkości wiatru, stopień ekspozycji na wiatr poszczególnych obszarów hałdy oraz częstotliwość zaburzeń powierzchni. Współczynnik emisji pyłu z erozji wietrznej, wyrażony w gramach na powierzchnię materiału, określony jest następującą zależnością:

    bariery wiatrochronne

    gdzie:

    WE – współczynnik  emisji (g/m2),

    k     – mnożnik wielkości cząstek pyłu, który wynosi:

    – dla całkowitego pyłu zawieszonego (TSP):  k=1,0

    – dla pyłu zawieszonego PM10: k=0,5

    – dla pyłu zawieszonego PM2,5: k=0,075

    N    – liczba zaburzeń w ciągu roku,

    Pi     – potencjał erozji wietrznej odpowiadający obserwowanej (lub prawdopodobnej) największej prędkości wiatru (u+) dla okresu między zaburzeniami (g/m2).

    Potencjał erozji wietrznej (P) określony jest zależnością:

    bariery wiatrochronne

    gdzie:

    P – potencjał erozji wietrznej (g/m2),

    u* – prędkość tarcia (m/s),

    ut* – graniczna prędkość tarcia właściwa dla danego rodzaju materiału (m/s).

    Dla wszystkich przypadków, gdy prędkość tarcia nie przekracza granicznej prędkości tarcia, potencjał emisji jest równy zeru, co oznacza, że materiał nie jest porywany z powierzchni hałdy, zgodnie z warunkiem:

    W obliczeniach wykorzystujemy dane o prędkościach wiatru z najbliższej stacji synoptycznej, zapewniającej wyniki o dostatecznej wiarygodności i częstotliwości odczytów. Metodyka US EPA wymaga przyjęcia najwyższej prędkości wiatru w każdym okresie emisji. Przykład różnicy pomiędzy wartościami prędkości średnich godzinowych, średniej prędkości dobowej i prędkością maksymalną z odczytów 10 minutowych przedstawiamy w poniższej tabeli (przykład danych IMGW, wysokość anemometru 10 m).

    Parametr
    Godziny
    01:00
    02:00
    03:00
    04:00
    05:00
    06:00
    07:00
    08:00
    09:00
    10:00
    11:00
    12:00
    13:00
    14:00
    15:00
    16:00
    17:00
    18:00
    19:00
    20:00
    21:00
    22:00
    23:00
    24:00
    Kierunek
    161
    165
    151
    106
    98
    82
    90
    93
    67
    94
    102
    124
    126
    131
    140
    137
    138
    137
    128
    142
    168
    187
    168
    222
    Średnia prędkość godzinowa
    1,7
    1,3
    0,9
    0,7
    2,0
    1,4
    2,1
    1,6
    1,7
    2,8
    3,2
    3,1
    3,0
    2,6
    2,6
    3,2
    1,8
    2,1
    2,5
    2,0
    1,9
    1,9
    1,3
    1,2
    Średnia prędkość dobowa
    2,0
    Prędkość maksy-malna
    6,9
     

    Podział roku na poszczególne okresy, dla których wyznacza się maksymalną prędkość wiatru wynika z charakterystyki pracy hałdy – modelu naruszania powierzchni skutkującej odświeżeniem potencjału emisyjnego. Dla hałd eksploatowanych z wysoką częstotliwością właściwe jest przyjęcie okresów dobowych lub godzinowych i aglomeracja okresów, w których dochodzi do emisji do kilkunastu lub kilkudziesięciu w roku.

    W przypadku wyższych hałd, dla których obszary narażenia na erozję wietrzną znajdują się w granicznej warstwie wiatru poprawne obliczenie prędkości tarcia wiatru wymaga podziału powierzchni hałdy na podobszary reprezentujące różne stop­nie ekspozycji na wiatr. Różnica prędkości powietrza opływającego hałdę dla poszczególnych podobszarów jest określona za pomocą współ­czynnika us/ur stanowiącego iloraz prędkości wiatru nad powierzchnią podobszaru oraz pręd­kości wiatru natarcia. Obraz podobszarów właściwych dla hałd o różnej geometrii i różnych kierunków wiatru przedstawia poniższy rysunek.

    bariery wiatrochronne pył

    Rys. Schemat rozkładu podobszarów o różnym współczynniku zróżnicowania prędkości wiatru (us/ur) w zależności od kształtu hałdy i kierunku wiatru

    Źródło: Compilation of Air Pollutant Emission Factors, 13.2.5 Industrial Wind Erosion Figure 13.2.5-2. Contours of normalized surface windspeeds us/ur

    Skala emisji

    Przykład ilustrujący wielkość emisji z erozji wietrznej może stanowić średniej wielkości plac składowy węgla. Parametry przyjęte do obliczeń wynoszą:

    - powierzchnia aktywna: 30 arów (3 000 m2),

    - częstotliwość odświeżania potencjału emisji: 1/1h,

    - czas eksploatacji: 10 godzin dziennie,

    - graniczna prędkość tarcia: 0,54 m/s,

    - charakterystyka meteorologiczna: prędkość maksymalna w każdej godzinie, z odczytów 10 minutowych.

    Dla wybranego przykładu wielkość emisji rocznej wynosi:

    - pył ogółem (TSP): 2,9 Mg/rok,

    - pył zawieszony PM10: 1,4 Mg/rok,

    - pył zawieszony PM2,5: 0,21 Mg/rok.

    Techniki ograniczania emisji z erozji wietrznej

    Ochrona składowanych materiałów przed erozją wietrzną jest powszechnie rekomendowana jako najlepsza dostępna technika BAT w następujących sektorach:

    - dużych obiektów energetycznego spalania: stosowanie ekranów wiatrochronnych magazynów węgla (Dokument Referencyjny LCP, pkt 4.4.1 Techniki wyładunku, magazynowania i transportu paliwa),

    - produkcji żelaza i stali: zainstalowanie barier przeciwwietrznych lub wykorzystanie naturalnego terenu jako osłony (konkluzje BAT - decyzja nr 2012/135 z dnia 28 lutego 2012 r., BAT 11),

    - produkcji cementu, wapna i tlenku magnezu: przykrywanie lub obudowanie miejsca składowania materiałów sypkich ekranami, ścianami lub barierą pionowo rosnącej zieleni - umieszczenie sztucznych lub naturalnych barier w celu ochrony otwartych pryzm przed wiatrem (konkluzje BAT -  decyzja nr 2013/163 z dnia 26 marca 2013 r., pkt 15a, pkt 41a),

    - przemysłu metali nieżelaznych: stosowanie nasadzeń ochronnych, barier wiatrochronnych lub kopców w celu ograniczenia prędkości wiatru w przypadku składowania na wolnym powietrzu (konkluzje BAT - decyzja nr 2016/1032 z dnia 13 czerwca 2016 r., BAT 7p),

    - produkcji płyt drewnopochodnych: przechowywanie trocin i materiałów, z których łatwo powstaje pył w silosach, pojemnikach, pod zadaszeniem itp. lub w zamkniętych obszarach składowania (konkluzje BAT - decyzja nr 2015/2119 z dnia 20 listopada 2015 r., BAT 23 c).

    - powszechne zastosowanie przy magazynowaniu: stosowanie nasadzeń ochronnych, ogrodzeń wiatrochronnych lub kopców od strony nawietrznej, obniżających prędkość wiatru (Dokument Referencyjny EFS, pkt 4.3.5. Techniki i środki zapobiegania / redukcji pylenia stosowane przy magazynowaniu na powietrzu, pkt 4.3.6.2. Metody ochrony przed wiatrem).

    Spośród wszystkich przedstawionych powyżej metod najwyższą skutecznością charakteryzują się bariery wiatrochronne wykonane ze specjalnie przygotowanych materiałów zmniejszających prędkość wiatru i dobranych pod względem parametrów i lokalizacji do geometrii hałdy.

    Materiał przegród stanowi barierę przepuszczającą częściowo powietrze, dzięki czemu za przegrodą nie powstaje strefa zawirowań. Różnice w opływie przegrody litej i półprzepuszczalnej przedstawia poniższy rysunek.

    przegrody wiatrochronne pył

    Rys. Wizualizacja opływu bariery litej (a) i półprzepuszczalnej (b).

    Źródło: B. J. Billman, S. P. S. Arya, Windbreak effectiveness for storage-pile fugitive-dust control. A Wind Tunel Study, Department of Marine, Earth and Atmospheric Sciences North Carolina State University.

    W przeciwieństwie do barier litych, bariery półprzepuszczalne charakteryzuje również znaczny zasięg strefy cienia aerodynamicznego, przedstawiony na poniższym diagramie.

    ochrona przed wiatrem

    Rys. Obraz pola prędkości wiatru przy braku przeszkody i dla przeszkody półprzepuszczalnej.

    Źródło: Materiały reklamowe Dust Solutions, Inc.

    Dzięki bardzo dużemu zasięgowi strefy uspokojonego przepływu możliwa jest ochrona przed erozją wietrzną całej powierzchni hałdy lub placu składowego. W praktyce oznacza to prawie całkowite wyeliminowanie emisji z erozji wietrznej i związanej z nią uciążliwości. Wyniki badań skuteczności barier wiatrochronnych zawiera między innymi raport Komisji Europejskiej -  Reduction of fugitive dust from coal stockpiles, EUR 17162 EN, A. King, British Coal Corporation, 1996.

    Producenci barier wiatrochronnych

    Oferowane na rynku systemy barier wiatrochronnych oparte są na trzech rodzajach materiałów:

    - siatkach,

    - pasach,

    - blachach otworowych.

    Poniżej przedstawiamy produkty wiodących producentów barier oraz efekty możliwe do osiągnięcia z ich zastosowaniem i przykłady wdrożeń.

    Dust Solutions Inc.

    bariery wiatrochronne DSIDust Solutions Inc. oferuje unikalną technologię siatek poliestrowych z włóknem samoczyszczącym. Dzięki elastyczności bariery ruch przepływającego powietrza powoduje usuwanie pyłu osadzającego się na przegrodzie. Własności te zabezpieczają również barierę przed osadzaniem lodu (śniegu, szronu, szadzi, marznącego deszczu) i nadmiernym wzrostem masy materiału bariery. Oprócz dostawy siatki i podpór oferta Dust Solutions Inc. obejmuje również projekt techniczny w pełnym zakresie, jaki jest wymagany przez zamawiającego (lokalizację, geometrię, wyznaczenie wysokości) oraz projekty podpór. DSI Solutions Inc. oferuje również montaż bariery lub wsparcie wykonawcy oraz serwis pogwarancyjny.

    przegroda wiatrochronna DSIMaksymalna skuteczność redukcji prędkości wiatru siatek DSI mieści się w przedziale od 70 do 80 procent, w zależności od rodzaju materiału. Żywotność siatki dostawca gwarantuje na poziomie 10 lat, zapewniając, że materiał jest zaprojektowany na okres 20 lat i wskazując na doświadczenia klientów, którzy eksploatują barierę przez okres 30 lat. Szczegółowe informacje o produktach Dust Solutions Inc. dostępne są na stronie:

    http://www.nodust.com

     

    WeatherSolve Structures Inc.

    Oferta WeatherSolve Structures Inc. obejmuje kompleksową realizację bariery, począwszy od projektu technicznego (lokalizacji i geometrii) oraz projektu podpór i specyfikacji ich wykonania, poprzez dostawę specjalistycznych elementów systemu, aż do montażu bariery. Elementy konstrukcji wsporczych (pylonów) są przeważnie wykonywane na miejscu. Zakres oferowanych usług obejmuje również serwis pogwarancyjny.

    bariery wiatrochronne WeatherSolve

    Bariery WeatherSolve Structures Inc. wykonane są z siatek polipropylenowych. W zależności od wymaganych parametrów tłumienia wiatru dobierany jest materiał o odpowiednim współczynniku przepuszczalności aerodynamicznej (47%, 40%, 24%). Osadzający się na siatce pył w ograniczonym zakresie zmienia jej własności aerodynamiczne. Przeważnie nie w takim stopniu, aby konieczne było oczyszczania siatki. W razie potrzeby istnieje możliwość usunięcia pyłu za pomocą armatki wodnej.

    przegrody wiatrochronne WeatherSolveDostawca rekomenduje wykonanie dolnej warstwy bariery z litego materiału, np. bloków betonowych oraz zapewnienie pasa wolnego z obu stron bariery w celu usuwania śniegu, który może wytrącać się u podnóża bariery, z jednej lub drugiej strony, w zależności od kierunku wiatru. Minimalna żywotność siatki wynosi 8 lat (10-12 lat przy zapewnieniu bieżących napraw mocowań i odpowiedniego naciągu). Szczegółowe informacje o produktach WeatherSolve Structures Inc. dostępne są na stronie:
    ttp://www.weathersolve.com/

     

    Linear Composites Limited Ltd.

    bariery przeciwwietrzne Linear CompositeOferta Linear Composites Limited Ltd. obejmuje pełne wsparcie projektowe na dowolnym poziomie określonym przez zamawiającego:

    • projekt bariery (wytrzymałość, wysokość, długość, siły itp.),

    • projekt słupów (specyfikacja stali i architektury elementów kratowych lub stężeń),

    • projekt fundamentów (na podstawie danych geotechnicznych oraz odpowiednich norm projektowych).

    Dostawca charakteryzuje skuteczność bariery zarówno poprzez ogólny wskaźnik redukcji prędkości wiatru (wartość przeciętna od 50 % do 60 %, wartość maksymalna do 90 %) oraz w formie szczegółowego profilu prędkości. Oferowana bariera wykonywana jest w systemie szczebli, które stanowią pasy z tworzywa sztucznego (poliestru i polietylenu). Odporność na osadzanie śniegu i lodu zapewnia wysoka wytrzymałość materiału i ruch wywołany wiatrem. Gładka powierzchnia pasów nie dopuszcza również do osadzania znacznych ilości pyłu. W razie potrzeby powierzchnię bariery można oczyścić strumieniem wody.

    przegrody wiatrochronne Linear CompositeDostawca nie udziela gwarancji na określony czas użytkowania materiału, wskazując na swoje doświadczenie, w którym przy prawidłowej eksploatacji bariery, jej żywotność kształtuje się na poziomie 25 lat. Oferta firmy Linear Composites Limited Ltd. dostępna jest na stronie: http://linearcomposites.net/

     

    Anping Yaqi Wire Mesh Co. Ltd.

    bariera wiatrochronna YagiOferta Anping Yaqi Wire Mesh Co. Ltd. obejmuje dostawę elementów barier wiatrochronnych - paneli z blach otworowych. Panele mają szerokości 1,0 m i długości 4,0 m i są oferowane z blachy o grubości 0,5 mm lub 0,8 mm. Elementy przegrody wykonane są ze stali czarnej pokrytej powłoką PCW. Wraz z materiałem bariery Anping Yaqi Wire Mesh Co. Ltd. dostarcza rysunki techniczne i obliczenia wytrzymałościowe przegrody oraz słupów podporowych.

    Ogólny wskaźnik redukcji prędkości powietrza przepływającego przez przegrodę Anping Yaqi Wire Mesh Co. Ltd. wynosi 60%. W przypadku potrzeby oczyszczania powierzchni bariery z osadzającego się pyłu istnieje możliwość zastosowania do tego celu armatki wodnej (przy grubości blachy 0,8 mm).

    przegroda wiatrochronna YagiTrwałość powłoki gwarantowana przez Anping Yaqi Wire Mesh Co. Ltd. wynosi 10 lat. Oferta firmy Anping Yaqi Wire Mesh Co. Ltd. dostępna jest na stronie:

    http://www.yaqiwiremesh.com/

     

     

    Anping Anxin Wire Mesh Co. Ltd.

    bariera wiatrochronna pyłDrugim z głównych dostawców barier w systemie blach otworowych jest firma Anping Anxin Wire Mesh Co. Ltd. Oferowane przez nią elementy mają szerokość 0,9 m i długość 2,0 m, i są wykonane ze stali czarnej, niskowęglowej, pokrytej powłoką PCW. Grubość wykorzystywanej do produkcji blachy to 0,8 mm. Zastosowanie blachy o tej grubości umożliwia okresowe spłukiwanie pyłu z bariery za pomocą strumienia wody pod wysokim ciśnieniem. Dzięki specjalnemu profilowi poszczególne panele i cała bariera wiatrochronna są odporne na obciążenie związane z ciężarem śniegu lub szronu. Firma oprócz dostawy paneli zapewnia również rysunki techniczne i obliczenia wytrzymałościowe przegrody oraz słupów podporowych. Na życzenie zamawiającego możliwe jest dostarczenie jednej sztuki kratownicy podporowej jako przykładu  umożliwiającego ich wykonanie przez lokalna firmę, co pozwala zredukować koszty dostawy bariery. Ogólny wskaźnik redukcji prędkości wiatru przez barierę produkcji Anping Anxin Wire Mesh Co. Ltd. wynosi 75 %. Gwarancja na powłokę paneli obejmuje okres od 8 do 10 lat. Szczegóły oferty dostępne są na stronie http://www.anxinwiremesh.com/

    Próbki materiału barier

    Materiały barier dostarczanych przez: Dust Solutions Inc., WeatherSolve Structures Inc., Linear Composites Limited Ltd. oraz Anping Anxin Wire Mesh Co. Ltd. można obejrzeć w redakcji portalu Wszystkooemisjach.pl (po uprzednim ustaleniu terminu).

    Obliczenia przed decyzją o inwestycji

    Z uwagi na znaczny koszt budowy bariery wiatrochronnej decyzja o inwestycji musi być poprzedzona rzetelną analizą emisji niezorganizowanej ze wszystkich źródeł na terenie obiektu, w tym innych przyczyn emisji niezorganizowanej pyłu, takich jak ruch pojazdów po placach składowych i zanieczyszczonych drogach, przeładunek materiałów pylących oraz eksploatacja otwartych źródeł procesowych.

    Jedynie dysponując wielkościami emisji dla wszystkich źródeł możliwa jest ocena ich udziału w emisji całkowitej oraz w oddziaływaniu na powietrze. Warunkiem uniknięcia błędu w wyborze metod ochronnych jest poprawne wytypowanie źródeł, z których emisja wymaga ograniczenia. Kompleksowa analiza źródeł na terenie zakładu i przewidywanych redukcji emisji wraz z kosztorysem działań stanowią również podstawę optymalizacji nakładów inwestycyjnych i kosztów eksploatacyjnych.

    Więcej informacji o analizach emisji niezorganizowanej dostępnych jest na stronie:
    Programy ograniczenia emisji niezorganizowanej pyłu w zakładach przemysłowych

    Aktualności
    • 16
      czerwiec
      W sesji jesiennej 2025 roku odbędą się następujące kursy: - Specjalista ds. Emisji   23-24 września 2025 - Obliczenia rozprzestrzeniania zanieczyszczeń w powietrzu   28-29 października 2025 - Bilans LZO   25-26 listopada 2025 Zapisy poprzez formularze dostępne na ww. stronach. Zapraszamy
    • 28
      maj
      Zapraszamy na 3. Europejskie Forum Pelletu połączone z 10. Forum Pelletu. Wydarzenia odbędą się w dniach 12-13 czerwca 2025 r. w Gdyni. Organizowane przez Magazyn Biomasa Forum Pelletu to miejsce spotkań producentów i dystrybutorów pelletu i kotłów pelletowych, dostawców technologii, przedstawicieli sektora energetycznego i ciepłowniczego, a także samorządów i stowarzyszeń branżowych.  Wydarzenie będzie miejscem wymiany aktualnych informacji na temat innowacji technologicznych, nowych trendów i prognoz dla europejskich rynków pelletu. Program konferencji obejmuje następujące zagadnienia: Europejskie regulacje dla pelletu drzewnego Zmiany w certyfikacji pelletu  Polski rynek pelletu w Europie – interakcje z innymi państwami Rynek urządzeń grzewczych na pellet w Polsce – stan aktualny i prognozy rozwoju Szczegółowe informacje są dostępne na stronie https://magazynbiomasa.pl/forum-pelletu
    • 05
      maj
      W minionym tygodniu zostały opublikowane roczne oceny jakości powietrza za rok 2024 – kluczowe dokumenty dla końcowego etapu procesu inwestycyjnego (uzyskania pozwolenia zintegrowanego lub pozwolenia na wprowadzanie gazów i pyłów do powietrza). Wskazane w raportach obszary przekroczeń standardów jakości powietrza, które zgodnie z art. 225 ustawy Prawo ochrony środowiska determinują konieczność przeprowadzenia postępowania kompensacyjnego dla instalacji nowych lub zmienianych w sposób istotny, będą obowiązywały przez rok, do momentu opublikowania rocznej oceny jakości powietrza za rok 2025 (30.04.2026). Raporty dla poszczególnych województw i szczegółowe informacje o systemie rocznych ocen w kontekście postępowań kompensacyjnych przedstawiamy na stronie https://wszystkooemisjach.pl/409/roczna-ocena-jakosci-powietrza
    NEWSLETTER:
    Jeśli chcesz otrzymywać powiadomienia o nowych artykułach zapisz się
     
    Szkolenie 2025 Specjalista ds Emisji Emisje Zanieczyszczenie powietrza
    Szkolenie 2025 Bilans LZO
    Szkolenie 2025 Rozprzestrzenianie zanieczyszczeń powietrza
    Katalizatory do redukcji LZO - Katalizator Grupa PONER
    obliczenia śladu węglowego
    Konferencja LNG i bioLNG 6-7.10.2025 Gdynia
    Operat FB

    Zobacz komunikaty KE / JRC / UE-BRITE (IPPC Bureau) / INCITE / Rada Unii Europejskiej / Rada Europejska / US EPA / EEA / NIK / ETO / GDOŚ / GIOŚ / WIOŚ / IOŚ / MKiŚ:

    GIOŚ: Obwieszczenie Ministra Klimatu i Środowiska w sprawie wskaźnika średniego narażenia na pył PM2,5 w dużych miastach i aglomeracjach (14.8.2025)

    U.S. EPA [transport]: ICYMI – EPA Green Lights Diesel Exhaust Fluid (14.8.2025)

    EPA [CCS] Orders Archer Daniels Midland to Ensure Environmental Compliance of Carbon Sequestration Well in Decatur, Illinois (13.8.2025)

    JRC: Securing the forest carbon sink for the European Union’s climate ambition (1.8.2025)

    EPA [transport] Launches the Largest Deregulatory Actions in U.S. History with Proposal to Rescind Obama-Era Endangerment Finding (30.7.2025)

    GIOS: Jakość powietrza w Polsce w 2024 roku. Sprawdzone dane dostępne dla każdego (29.7.2025)

    U.S. EPA [kara za niezgłoszenie przypadkowego uwolnienia] First-Ever Accidental Release Rule Settlement Reached with Pacific Gas & Electric (28.7.2025)

    Instrat: ArcelorMittal wyłącza piec w Dąbrowie Górniczej – stanowisko Fundacji Instrat (25.7.2025)

    U.S. EPA [transport] Make Gas Cans Great Again by Improving Flow (24.7.2025)

    JRC: Globalne aktualne emisje z wykorzystaniem metodologii EDGAR Fast-Track (23.7.2025)

    IOŚ: Jakość powietrza w Europie w 2024 roku. IOŚ-PIB komentuje najnowszy raport CAMS (23.7.2025)

    GIOŚ: Rozwój i modernizacja wyposażenia do badań jakości powietrza oraz wspieranie ocen jakości powietrza (18.7.2025)

    MKiŚ: Nowe zasady - kontyngenty na HFC na 2026 r. (16.7.2025)

    KOBiZE/CAKE po raz trzeci z rzędu z najtrafniejszą krótkoterminową prognozą cen uprawnień do emisji EUA (14.7.2025)

    JRC: Instrumenty finansowe na rzecz działań w zakresie łagodzenia skutków zmian klimatu, adaptacji i walki z ubóstwem energetycznym (11.7.2025)

    KOBiZE: obowiązek składania sprawozdań CBAM za II kwartał 2025 roku oraz informacja na temat konsultacji ws. rozszerzenia mechanizmu CBAM (11.7.2025)

    Zobacz bieżące artykuły w Atmospheric Environment:

    Synergistic use of satellite and in-situ data for policy-relevant air quality information: A case study on Belgium

    A comprehensive study on the formaldehyde emission characteristics in central China based on emission inventory and remote sensing inversion

    Emission characteristics and environmental impacts of carbonyl compounds from construction machinery in China

    Rethinking environmental boundaries for contaminants of emerging concern

    Zobacz EUR-Lex:

    Zalecenie Komisji UE 2025/1710 z dnia 30 lipca 2025 r. w sprawie dobrowolnego standardu sprawozdawczości w zakresie zrównoważonego rozwoju dla małych i średnich jednostek (5.8.2025)

    Rozporządzenie delegowane Komisji UE 2025/927 z dnia 20 maja 2025 r. uzupełniające dyrektywę 2003/87/WE Parlamentu Europejskiego i Rady w odniesieniu do środków przyjętych przez Organizację Międzynarodowego Lotnictwa Cywilnego w odniesieniu do monitorowania, raportowania i weryfikacji emisji lotniczych w celu wdrożenia globalnego środka rynkowego i uchylające rozporządzenie delegowane Komisji UE 2019/1603 (31.7.2025)

    Rozporządzenie delegowane Komisji UE 2025/1463 z dnia 23 maja 2025 r. zmieniające rozporządzenie Parlamentu Europejskiego i Rady UE 2024/1735 w odniesieniu do określenia podkategorii technologii neutralnych emisyjnie oraz wykazu konkretnych komponentów używanych na potrzeby tych technologii (28.7.2025)

    Rozporządzenie delegowane Komisji UE 2025/1477 z dnia 21 maja 2025 r. uzupełniające rozporządzenie Parlamentu Europejskiego i Rady UE 2024/1735 przez określenie zasad dotyczących identyfikacji upoważnionych producentów ropy naftowej i gazu, którzy muszą wnieść wkład w osiągnięcie celu Unii dotyczącego dostępnej mocy zatłaczania CO2 do 2030 r., zasad obliczania ich odpowiednich wkładów oraz obowiązków sprawozdawczych (25.7.2025)

    Decyzja Komisji UE 2025/1479 z dnia 22 maja 2025 r. określająca proporcjonalny wkład podmiotów posiadających zezwolenie zdefiniowane w art. 1 pkt 3 dyrektywy 94/22/WE Parlamentu Europejskiego i Rady w realizację unijnego celu dotyczącego mocy zatłaczania CO2 do 2030 r. (25.7.2025)

    Sprawa C-621/23 P: Wyrok Trybunału z dnia 22 maja 2025 r. – Luossavaara-Kiirunavaara/Komisja – Odwołanie – Środowisko naturalne – Dyrektywa 2003/87/WE – System handlu uprawnieniami do emisji gazów cieplarnianych w Unii Europejskiej – Bezpłatny przydział uprawnień – Artykuł 10a ust. 1 – Pojęcie substytutów – Krajowe środki wykonawcze – Artykuł 11 ust. 1 – Wykazy instalacji objętych dyrektywą 2003/87 przedłożone Komisji Europejskiej przez państwa członkowskie – Decyzja (UE) 2021/355 – Propozycja zainteresowanego państwa członkowskiego dotycząca objęcia wskaźnikiem emisyjności dla rudy spiekanej podinstalacji produkującej granulat rudy żelaza – Decyzja o odrzuceniu – Określenie wskaźników emisyjności przez Komisję – Ogólny cel polegający na zachęcaniu do redukcji emisji gazów cieplarnianych – Brak zobowiązania rezultatu – Artykuł 296 TFUE – Obowiązek uzasadnienia decyzji instytucji Unii Europejskiej (21.7.2025)

    Sprostowanie do decyzji wykonawczej Komisji UE 2021/2326 z dnia 30 listopada 2021 r. ustanawiającej konkluzje dotyczące najlepszych dostępnych technik BAT w odniesieniu do dużych obiektów energetycznego spalania zgodnie z dyrektywą Parlamentu Europejskiego i Rady 2010/75/UE (10.7.2025)